Objev: Čeští vědci testují materiál budoucnosti

Bez počítačů si dnes stěží dovedeme představit náš každodenní život. Data, s nimiž pracují jejich operační paměti, a která mohou být obrovsky cenná, jsou však neustále v ohrožení. Čeští experimentální fyzikové v nedávné době přispěli k poznání vlastností materiálu, díky němuž by počítače mohly uchovat svá data i po výpadku proudu.

Bez počítačů si dnes stěží dovedeme představit náš každodenní život. Data, s nimiž pracují jejich operační paměti, a která mohou být obrovsky cenná, jsou však neustále v ohrožení. Čeští experimentální fyzikové v nedávné době přispěli k poznání vlastností materiálu, díky němuž by počítače mohly uchovat svá data i po výpadku proudu.

Výsledky výzkumů skupiny Stanislava Kamby z Fyzikálního ústavu AV ČR, která spolupracovala s řadou dalších vědců např. z německého Jülichu či Yaleovy univerzity, byly nedávno publikovány těch nejprestižnějších vědeckých časopisech Nature a Nature Materials. Kromě lepšího poznání nového a jedinečného typu materiálu, vhodného k přípravě počítačových pamětí naleznou své uplatnění také v oblasti mnohem vzdálenější – při poznávání samotných počátků vesmíru. Nevěříte?

Potíže s pamětí
 Jak vlastně naše běžné stolní počítače, ale i jiné spotřebitele se zabudovanou pamětí, jakou jsou fotoaparáty či kamery, nakládají s informacemi? Počítačový specialista okamžitě odpoví, že hlavní rozdíl mezi nejrůznějšími komponenty, využívanými pro skladování dat, spočívá v tom, zda jsou schopny „odolat“ výpadku elektrického proudu. Takové odolné typy paměti jsou takzvaně nevolatilní a patří mezi ně např. různá externí média typu CD, DVD, flash disku či pevných disků. Data uložená na těchto typech pamětí sice nejsou bezprostředně ohrožena výpadkem elektrického proudu, mají však řadu jiných nevýhod. Pevné disky jsou v první řadě stále relativně pomalé. Flash paměti jsou sice „o fous“ rychlejší, mají však zase omezenou kapacitu přepisování tedy životnost. Od důležité složky počítače, operační paměti (RAM) však vyžadujeme především rychlost a schopnost neustálého přepisování.

Jak pracuje RAM?
 Jistě si všichni pamatujeme např. na magnetofonové pásky či kazety. Když jste si z nich chtěli přehrát svou oblíbenou skladbu, bylo třeba zmáčknout knoflík se dvěma šipkami a trpělivě vyčkat, než se kýžené místo na pásku dostalo ke čtecí hlavě. Anglická zkratka RAM označuje způsob uložení informace, kde nic takového není třeba. „Paměť s náhodným přístupem“, což je doslovný překlad anglického „random-access memory“ umožňuje přístup ke kterékoliv informaci na ní uložené v libovolném okamžiku. Dnes se k tomuto způsobu ukládání dat užívají v první řadě paměti založené na polovodičích. Tento typ skladování informací z nich však dělá paměti volatilní – při výpadku elektrického proudu všechny informace zmizí jako mávnutím kouzelného proutku. Není proto divu, že fyzikové dnes věnují hodně času výzkumům materiálů, z nichž by bylo možné vyrobit stabilní elektronické paměti, které by zároveň pracovaly s potřebnou rychlostí. 

Ideální kombinace na obzoru
 Materiály, které by splňovaly jak nároky na stabilitu, tak na rychlost, dnes již existují a částečně se již využívají. Jedním typů takových látek jsou takzvaná feroelektrika, tedy látky, jejichž polarizaci lze ovlivňovat vnějším elektrickým polem. Takové materiály, např. na bázi titanátů (např. BaTiO3 nebo PbZrTiO3), dnes již dokáží uchovat informaci i po vypnutí proudu. Informaci dokáží uchovávat i média magnetická, která se běžně využívají jak např. v pevných discích. Magnetické i feroelektrické RAM paměti se dnes běžně používají v  tzv. „chytrých kartách“, například elektronických průkazech či lyžařských pasech. Oba typy materiálů však mají své nevýhody. Přestože jsou velmi rychlé, mají pro požadavky operačních pamětí stále příliš malou kapacitu. Způsob zapisování informací v magnetických pamětích způsobuje jejich přehřívání. Tím zabraňují zvyšování integrace elektronických obvodů a tedy i jejich kapacity. Kdyby se však zdařilo oba typy zkombinovat, tedy připravit nevolatilní paměť z materiálů, které by byly zároveň feroelektrické i magnetické (takzvaně multiferoické), znamenalo by to pro kvality RAM pamětí velký krok kupředu.

Tajemství tenkých vrstviček
 Materiálů, které by v sobě dokázaly kombinovat obě vlastnosti, je v přírodě však po čertech málo. A co hůře – kýžené vlastnosti se projevují pouze při teplotách, v nichž by stolní počítač jen stěží někdo používal, při méně než -250 0C. Skupina Stanislava Kamby z Fyzikálního ústavu AV ČR společně s řadou dalších spolupracovníků z českých i zahraničních vědeckých institucí proto navrhla a následně i experimentálně potvrdila, že ze sloučeniny EuTiO3 (tedy sloučeniny europia, titanu a kyslíku) lze vytvořit silnou multiferoickou látku. Jak je to ale možné, když se u ní za běžných podmínek takové vlastnosti nevyskytují? Tajemství jejich „fíglu“ spočívá v tom, že využili mechanického napětí vznikající díky tomu, že nechali vrstvu  EuTiO3 narůst na tenkých podložkách z různých typů materiálů (LSAT, SrTiO3, DyScO3). Tenoučké vrstvičky se proto chovají jinak, než by se dalo očekávat od objemového materiálu.

Pohled do budoucnosti
Hlavní předností nového materiálu tedy je, že jeho magnetické vlastnosti lze ovlivňovat zvenčí – prostřednictvím elektrického pole. A právě tato vlastnost z nich činí skvělého kandidáta k přípravě nevolatilních magnetických RAM pamětí, do kterých by šlo zapisovat informace právě pomocí takového vnějšího pole. Nadšení z unikátních vlastností nového materiálu je však přece jen třeba malinko krotit. Tyto efekty totiž stále fungují pouze za velmi nízkých teplot. Tak proč vlastně tolik povyku, když si na výrobu nových typů pamětí budeme muset ještě nějakou dobu počkat? Za velký úspěch lze považovat využití mechanického napětí v tenkých vrstvách na přípravu umělých multiferroických materiálů, které mají kompletně jiné vlastnosti než stejné materiály ve formě krystalů. Čeští vědci jako první experimentálně prokázali, že to jde. V současné době pracují vědci již na jiných tenkovrstvých materiálech, které budou mít požadované vlastnosti i za teplot, v nichž je bude možné využívat třeba i na vašem stole za pokojové teploty.

Nový materiál a dějiny vesmíru
Převaha hmoty nad antihmotou, kterou ve vesmíru pozorujeme a díky níž vesmír vůbec existuje, je možná jen za jednoho předpokladu: musí existovat zásadní rozdíl mezi chováním částic a jejich antičástic. Tomuto jevu říkají fyzikové „porušení CP-symetrie“ (C – charge = náboj; P – parity, souvisí se zrcadlovou symetrií). A jak souvisí tato abstraktní fyzikální tématika s materiálovým výzkumem? Problém spočívá v tom, že porušení symetrie lze vysvětlit nejrůznějšími způsoby. Jeden z nich spadá do rámce nejobvyklejší teorie subatomárního světa, standardního modelu“. Existují však i teorie konkurenční, např. „supersymetrický model“. Teorie předpovídá, že rozhodnutí mezi konkurenčními modely by mohlo padnout prostřednictvím přesného změření tzv. dipólového momentu elektronu (viz rámeček „Tajemný elektrický dipól“). Díky specifickým vlastnostem sloučeniny Eu0.5Ba0.5TiO3 se možnost změřit jeho přesnou hodnotu posunula do oblasti, kterou již moderní magnetometry dokáží zachytit.

Tajemný elektrický dipól
A co že je to vlastně ten elektrický dipól? Není to vlastně nic jiného, než elektrická obdoba magnetického dipólu u magnetu se severním a jižním pólem. Obvykle vzniká, když vedle sebe umístíme kladně a záporně nabité částice. Ty na sebe začnou vzájemně působit a vzniká elektrické pole. Pro jeho změření je důležité, že se elektrický dipól dá natáčet či dokonce překlápět pomocí přiloženého elektrického pole. Ale není to vlastně zvláštní? Již na základní škole jsme se přece učili, že elektron má náboj jen záporný! Pokud však elektron narušuje CP-symetrii, jeho elektrický náboj není prostorově symetricky rozložen, a tudíž může dipólový moment mít. Pokud vůbec dipólový moment elektronu existuje, je velmi malý a nikomu se ho zatím nepodařilo naměřit. Nová možnost se však otevřela díky materiálu, jehož přesné vlastnosti byly určeny i díky příspěvku fyziků ze skupiny Stanislava Kamby.

Rubriky:  Technika
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Česká republika je království spamů

Česká republika je království spamů

Podle nejnovějších údajů expertů na kybernetickou bezpečnost z února 2019 odchází z Česka...
Laser vyhledá a zničí nádorové buňky

Laser vyhledá a zničí nádorové...

Za novým zařízením, které dokáže vyhledávat a úspěšně eliminovat...
ČVUT řeší, jak pomoci záchranářům

ČVUT řeší, jak pomoci záchranářům

Odborníci z Fakulty elektrotechnické ČVUT v Praze vyvinuli simulátor, který změní způsob...
Speciální laboratoř pro čtení DNA rostlin v Olomouci

Speciální laboratoř pro čtení...

Nová laboratoř pro sekvenování DNA, tedy čtení dědičné informace rostlin, byla...
Spoluzakladatel Googlu Brin nadále pracuje na své vytoužené obří vzducholodi

Spoluzakladatel Googlu Brin nadále...

Jsou to už tři roky, co spoluzakladatel Googlu Sergey Brin vypustil do...
Cirkus bez zvířat? Nová experimentální show

Cirkus bez zvířat? Nová...

Při návštěvě klasického cirkusu se jistě každý zamyslí nad osudy zvířat,...
Vzniká speciální web pro blízké pacientů po mrtvici

Vzniká speciální web pro blízké...

Na vytvoření speciálního webu, jenž by měl sloužit těm, jejichž blízcí...
Novinky mezi notebooky pro rok 2019

Novinky mezi notebooky pro rok 2019

Zajímají vás počítače? Milujete notebooky? Ujíždíte na novinkách?...
V Business Link Visionary odstartuje první československý blockchain akcelerátor

V Business Link Visionary odstartuje...

Pražské coworkingové centrum Business Link Visionary nově...
Ani blesk nezastavil start rakety

Ani blesk nezastavil start rakety

Krátce po startu z ruského kosmodromu Pleseck udeřil do rakety Sojuz blesk. Podle...

Nenechte si ujít další zajímavé články

Zachránce Alan Turing: Zemřel před šedesáti pěti lety. Úmrtního oznámení se dočkal až nyní

Zachránce Alan Turing: Zemřel před...

Oznámení o úmrtí člověka, který zemřel před více než šedesáti lety, překvapil...
Americké letectvo ukázalo letadla, ve kterých lze přečkat atomový výbuch

Americké letectvo ukázalo letadla, ve...

Přáli jste si někdy mít letadlo, které by vydrželo i výbuch...
Aktuálně: Proč lidem v Ohiu teče z kohoutků růžová voda?

Aktuálně: Proč lidem v Ohiu teče z...

Obyvatelé rezidence Coal Grove nevěřili svým očím, když jim nedávno začala...
Historie kanibalismu. Kdo a kde pojídal lidské maso?

Historie kanibalismu. Kdo a kde...

Kanibalismus je nám v současnosti nejvíce znám z televizních seriálů a hororů....
Numerologie Karlova mostu

Numerologie Karlova mostu

Záhadami je opředený také Karlův most, jedno z nejznámějších...
Abú-Dhabí: Slunce, písek a luxus

Abú-Dhabí: Slunce, písek a luxus

Sníte o exotických dálkách? Ještě před pár lety to byla chudá rybářská vesnice...
Židovské památky v Boskovicích

Židovské památky v Boskovicích

Čtyři roky byly opravovány části někdejšího židovského ghetta v Boskovicích,...
Skvělá koupačka v Pasohlávkách

Skvělá koupačka v Pasohlávkách

Aqualand Moravia v Pasohlávkách nám nabízí nekonečný relax. Můžeme si...
Praha tajemná: Staré Židovské Město a Golem

Praha tajemná: Staré Židovské...

Světovým unikátem je takzvaná židovská Praha, čtvrť Josefov. Ta je opředena bezpočtem...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.