Kde bude stát základna na Měsíci?

V roce 2018 by se měli lidé vrátit na Měsíc. Chystané výpravy by mohly být prvním krokem k založení stálé základny na jeho povrchu. Přináší to však řadu problémů k řešení a hrozí i různá nebezpečí!V roce 2018 by se měli lidé vrátit na Měsíc. Chystané výpravy by mohly být prvním krokem k založení stálé základny na jeho povrchu. Přináší to však řadu problémů k řešení a hrozí i různá nebezpečí!

Podle odborníků z NASA je zřízení měsíční základny úkolem, který je spojen s nezbytným zodpovězením mnoha otázek. Nejprve je nutno pro takovou základnu vůbec nalézt vhodné místo a poté musí vědci pro provoz takové základny vyřešit zdroje energie, vody, kyslíku a dalších nezbytností.

Na astronauty budou na Měsíci číhat i různá nebezpečí, a proto se také přemýšlí o tom, jak jim čelit.

Na Měsíci je voda!V roce 1994 mapovala Měsíc sonda Clementine. Analýzou získaných obrázků vědci zjistili, že v blízkosti jižního pólu našeho nejbližšího souseda se nachází hluboké krátery, na jejichž dno nikdy nedopadá sluneční světlo.

To vedlo vědce k domněnce, že zatímco z míst, která byla vystavená Slunci, voda už dávno unikla, v oblastech permanentního stínu mohla být zachována. Podobně jako naše Země i Měsíc byl totiž v dávné minulosti Sluneční soustavy bombardován kometami, které zřejmě na obě tělesa vodu přinesly.

O několik let později tuto hypotézu skutečně potvrdil spektrometr na palubě sondy Lunar Prospektor. Narozdíl od předchozích očekávání by se měla vyskytovat dokonce na obou pólech. Velmi hrubé odhady hovoří o desítkách až stovkám miliónů tun vody.

Data ukazují, že voda se vyskytuje ve formě malých krystalů ledu v měsíční hornině – regolitu – v koncentracích od 0,3% od 1%. Vědci odhadují, že tyto krystaly jsou rozptýleny na ploše 5000-20 000 km2 na jižním pólu a 10 000-50 000 km2 v oblasti severního pólu.

Kde Slunce svítí celý denDovážet vodu, kyslík či raketové palivo na Měsíc ze Země je příliš nákladné a značně by to prodražilo provoz základny. Proto je velmi důležité najít zdroje přímo na Měsíci a objev vody na dnech polárních kráterů k vybudování základny právě v těchto oblastech se tedy přímo nabízí.

Vodního ledu lze navíc využít nejen jako zdroje vody pro posádku stanice, ale vodu lze rovněž rozložit na kyslík pro dýchání a vodík na výrobu paliva pro raketové motory.Polární oblasti mají i další výhodu.

Měsíc má narozdíl od Země velmi malý sklon rotační osy pouhého 1,5 stupně, což znamená, že jeho póly nejsou vystaveny takovým extrémům jako je tomu na naší planetě. Půl roku trvající polární noci zde neexistují.

Právě naopak zde lze najít oblasti, kde Slunce svítí téměř celý měsíční den. Základna postavená na takovém místě by měla k dispozici velmi potřebný zdroj sluneční energie.

Stálých -50 ºC je příznivá teplota!Už před několika lety se Ben Bussey (dříve ESA nyní Johns Hopkins University Maryland, USA) zabýval otázkou umístnění základny. Vycházel z dat sondy Clementine a na okraji kráteru Shackleton v blízkosti měsíčního jižního pólu našel několik míst, která splňují dva základní požadavky: mají dostatek slunečního záření k produkci energie a jsou velmi blízko oblasti věčného stínu, kde je pravděpodobně uchován led.

Okraj kráteru Shackleton je osvětlen 80 % dne, další dvě místa vzdálená pouhých 10 kilometrů pak 65 a 70 % dne. Nedaleko je i oblast věčného stínu a velmi důležité je, že zde nejsou velké sezónní rozdíly v podmínkách.

Nedávno Ben Bussey a jeho tým zveřejnili článek, ve kterém se pro změnu věnují severním polárním oblastem. Jako další vhodné místo označili severní okraj 73 km širokého kráteru Peary. Protože Clementine nemapovala Měsíc po celý rok, panuje ještě určitá nejistota, ale vyhodnocení získaných dat naznačuje, že i toto místo je skutečně téměř po celý rok osvětleno slunečním zářením.

A podobně jako u jižního pólu i zde nejsou velké teplotní rozdíly. Zatímco kdekoliv jinde na Měsíci jsou běžné rozdíly mezi dnem a nocí od 100 do -180 ºC, zde se teploty stabilně pohybují kolem -50 ºC.

„Oblast s takto relativně příznivým rozložením teplot je atraktivním místem pro vybudování dlouhodobého zařízení,“ uvádí Ben Bussey.

Teleskop pátrá po minerálech Ve srovnání se Zemí je Měsíc poměrně chudý na minerály, přesto se zde některé z nich nacházejí a vzbuzují zájem vědců. V hledáčku odborníků z NASA je minerál ilmenit (FeTiO3), který se v pozemských podmínkách nachází jen v malých koncentracích do 2%, ale na Měsíci byla zjištěna přítomnost čediče s jeho až 18% obsahem.

„Má vlastnosti, které by mohly být užitečné při budování lunární základny,“ řekl Bruce Hapke z University of Pittsburgh.Ilmenit totiž obsahuje kyslík. V měsíční hornině však není sám, ale je v ní rovněž zachycen vodík a hélium, pocházející ze slunečního větru.

Tyto plyny by mohly být uvolněny a také využity. Navíc by se pro výstavbu samotné základny mohly použít železo a titan, v ilmenitu rovněž obsažené.Vědecký tým pod vedením Jima Garvina (NASA) proto využil Hubbleův kosmický dalekohled (HST) k pátrání po tomto minerálu.

Jednalo se o velmi neobvyklé pozorování, protože HST nebyl na takový účel vůbec vybaven. Nicméně s jeho pomocí vědci získali snímky v ultrafialovém záření, s rozlišením pouhých 50 metrů. HST studoval místa přistání lodí Apollo 15 a 17 a okolí kráteru Aristarchus.

Místa přistání Apollo jsou velmi dobře prozkoumána a astronauti z nich přivezli celou řadu vzorků, včetně právě ilmenitu. Tyto vzorky budou použity pro srovnání s daty z kráteru Aristarchus. Předběžné výsledky naznačují existenci na kyslík bohaté horniny v oblasti toho kráteru.

„Mohla by to být velmi dobrá místa pro návštěvu robotů či lidských výzkumníků,“ dodává Jim Garvin.

Solární panely z prachuNa měsíční povrch dopadá 13 000 terawattů sluneční energie a její využití pro provoz lunární základny se tedy doslova nabízí. Doprava solárních panelů ze Země bude opět vyžadovat velké náklady, a proto se tým Alexe Freundlicha (University of Houston) zabývá myšlenkou výroby solárních panelů pouze ze zdrojů dostupných přímo na místě.

Zaměřili se přitom na měsíční regolit, jemný šedý prášek, z poloviny tvořený oxidem křemičitým a obsahující dalších 12 oxidů kovů včetně hliníku, hořčíku či železa. Vědci došli k závěru, že tato směsice obsahuje všechny nezbytné prvky pro výrobu solárních panelů.

Jejich nápad je poměrně jednoduchý. Solární energií poháněný robot, pohybující se po povrchu Měsíce, bude regolit sbírat, tavit jej a za sebou zanechávat sklovitý podklad pro položení solárních článků.

Freundlich a jeho tým dokonce tento postup úspěšně vyzkoušeli ve vakuové komoře s materiálem, který má identické složení se vzorky dovezenými z Měsíce. Vědci tímto experimentem dokázali, že základ pro solární panely, který tvoří podstatnou část jejich hmotnosti, může být skutečně zcela vyroben z měsíčního regolitu.

Další plány zahrnují využití křemíku z regolitu pro výrobu polovodičových součástí solárních článků.

Solární panely vyrobené touto cestou nebudou však příliš efektivní. Zatímco na Zemi je možno vyrobit články s účinností do 20%, články vyrobené „doma“ na Měsíci budou schopny přeměnit na užitečnou pouze 1% dopadající energie.

Plocha takto vyrobených panelů není ovšem nijak omezená, proto nebude nízká účinnost žádnou překážkou.

Číhající nebezpečíPokud se podaří vyřešit veškeré problémy s vybudováním stálé základny a jejím zásobováním surovinami a energií, stále ještě není zcela vyhráno. Na zde pracující astronauty čeká řada nebezpečí, jimž bude třeba čelit.

Mezi ně patří především záření přicházející od Slunce či z kosmického prostoru nebo prašné prostředí. Zatímco zemská atmosféra nás před kosmickým zářením ochrání, na Měsíci žádná taková ochrana neexistuje a záření dopadá přímo na jeho povrch.

Navíc při kolizích s částicemi povrchu spouští reakce, které produkují další záření, především neutrony. Problémem je i dlouhodobé vystavení obyvatel základny takovému záření. Když došlo 20. ledna k prudké sluneční erupci, byly do okolního prostoru vyvrženy miliardy tun elektricky nabitého plynu, obsahujícího zejména rychlé protony s ohromnou energií.

Takové částice bez problému projdou skrz 11 cm silný sloupec vody. Zde, na zemském povrchu jsme byli bezpečně ochráněni, ale pokud by v takovém okamžiku na povrchu Měsíce pracovali astronauti, jejich zdraví by bylo vážně ohroženo.

Zasaženi takovouto erupcí znamená pro člověka nemoc z ozáření! V tomto případě by sice nebyla smrtelná, ale pro lidi na základně by představovala opravdu velkou komplikaci.

Jak vyzrát na záření?Nejjednodušší variantou ochrany před zářením je jeho odstínění. Například posádka Mezinárodní kosmické stanice je velmi dobře chráněna a lednová erupce ji vůbec neohrozila. Předpokládá se, že i měsíční základna bude mít proti kosmickému záření ochranné štíty.

Mezi materiály, o kterých se uvažuje, patří hliník či některé moderní plasty. Obyvatelé budou navíc sledovat „kosmické počasí“ a v případě sluneční erupce nebudou vycházet z budov stanice.Zcela jinou koncepci ochrany před zářením zvažují Charles Buhler a John Lane (ASRC Aerospace Corp.).

Protože většina částic kosmického záření je elektricky nabita, hodlají k jejich odstínění využít elektrostatické pole. To by vytvářely nafukovací koule o průměru pěti metrů, umístněné nad lunární základnou, nabité vysokým elektrický napětím kolem 100 MV. Vhodnou kombinací kladně a záporně nabitých koulí by bylo možno ochránit základnu před protony, elektrony i kladně nabitými ionty.

„Už jsme skutečně simulovali tři uspořádání, která mohou fungovat,“ říká Buhler. V úvahu přichází i varianta, kdy jsou tyto elektrostatické sféry umístněny nad pohybujícím se měsíčním vozidlem a chránící tak astronauty při jejich práci mimo základnu.

Nedýchat měsíční prach!Astronauti z lodí Apollo, kteří na Měsíci pracovali, připomínají, že mezi velké nepříjemnosti zdejšího prostředí patří všudypřítomný prach. Extrémně jemný a přitom drsný prach ulpíval na čemkoliv a bylo obtížné či spíše nemožné se jej zbavit.

Jakmile se prach dostal dovnitř lunárního modulu, dráždil plíce a oči astronautů a Harrisona Schmidta dokonce postihla měsíční podoba klasické senné rýmy. Odborník Russell Kerschmann se v NASA Ames zabývá vlivem minerálního prachu na zdraví člověka.

Dýchání měsíčního prachu může totiž být pro člověka velmi nebezpečné. „Skutečným problémem jsou plíce,“ vysvětluje. V některých případech může prach dokonce způsobit vážnou nemoc, silikózu. Ačkoliv není jedovatý, usazuje se v plicích, brání jejich obvyklé činnosti a nelze jej vykašlat.

Nejtěžší případy dokonce končí smrtí člověka. Aby se NASA s tímto problémem vypořádala, zahájila program Dust, který má přinést řešení. Mezi vhodné technologie může například patřit tenký film z materiálu odpuzujícího prach, kterým budou nářadí a další zařízení stanice pokryty.

V úvahu přichází opět i využití elektrostatického pole, které by například mohlo sloužit k odstranění prachu ze skafandrů. Měsíc v číslechStřední vzdálenost od Země 384 400 kmRychlost vzdalování od Země 3,8 cm / rokPrůměr 3 476 kmHmotnost 7,35 x 1022 kgÚniková rychlost 2,38 km/sOběžná doba kolem Země 29,5 dne Teplotní výkyvy -180 ºC až 100 ºCHmotnost vzorků dovezených na Zemi 382 kg

Kosmické lety k Měsíci1959 Luna 2 SSSR dopad na povrch1959 Luna 3 SSSR první snímky odvrácené strany Měsíce1966 Luna 9 SSSR první měkké přistání1968 Apollo 8 USA první pilotovaný oblet Měsíce1969 Apollo 11 USA první přistání lidí na Měsíci1970 Luna 16 SSSR první automatický návrat vzorků na Zemi1972 Apollo 17 USA zatím poslední přistání lodi s lidskou posádkou1994 Clementine USA detailní zmapování většiny povrchu1998 Lunar Prospector USA složení povrchu, led v polárních oblastech2003 SMART-1 první evropská sonda k Měsíci

Chystané výpravy2006 Lunar A Japonsko2007 Čandraján Indie Chang’e 1 Čína Selene Japonsko2008 Lunar Reconnaissance Orbiter USA

Jak se dá odstínit záření? (čím vyšší číslo, tím lepší stínění)

Běžný kosmický skafandr 0,25 g/cm2Plášť velitelského modulu Apollo 7 – 8 g/cm2Plášť raketoplánu 10 – 11 g/cm2Plášť Mezinárodní kosmické stanice 15 g/cm2Budoucí lunární základna (polyetylen + hliník) 20 g/cm2(zdroj NASA Science news)

Autor: Pavel Koten
Rubriky:  Vesmír
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Žhavé hvězdy pokrývají obří magnetické skvrny

Žhavé hvězdy pokrývají obří...

Astronomové objevili vskutku gigantické magnetické skvrny na povrchu extrémně...
Cesta do vesmíru je opět volná

Cesta do vesmíru je opět volná

Od 11. 5. do konce srpna tohoto roku mohou zájemci opět navštívit největší...
Zrod planety v přímém přenosu

Zrod planety v přímém přenosu

Pozorování provedená dalekohledem ESO/VLT odhalila neklamné známky zrodu...
Bahenní vulkanismus na Marsu

Bahenní vulkanismus na Marsu

Mezinárodní vědecký tým, jehož součástí byli i čeští výzkumníci,...
Planeta, kde po večerech prší. Nikoliv však voda, nýbrž rozžhavené železo

Planeta, kde po večerech prší. Nikoliv...

Pomocí dalekohledu ESO/VLT vědci pozorovali extrémní extrasolární planetu, u které...
Muskův Starship SN4 je na dobré cestě k prvnímu letu

Muskův Starship SN4 je na dobré...

Představitelé Muskovy americké technologické společnosti SpaceX mají důvod...
Astronomové vytvořili netradiční obraz planety Jupiter

Astronomové vytvořili netradiční...

Pomocí technologie Lucky imaging astronomové získali pozoruhodný snímek...
Nedaleko Sluneční soustavy byla nalezena černá díra

Nedaleko Sluneční soustavy byla...

Astronomové z Evropské jižní observatoře (ESO) a dalších institucí objevili černou...
Další důkaz, že se Albert Einstein nemýlil

Další důkaz, že se Albert...

Pozorování provedená dalekohledem ESO/VLT poprvé prokázala, že hvězda obíhající...
Hubbleův teleskop zkoumá vesmír již třicet let

Hubbleův teleskop zkoumá vesmír...

Přesně před třiceti lety 24. dubna 1990 raketoplán Discovery vynesl do...

Nenechte si ujít další zajímavé články

Václav Babinský při zatýkání kousal

Václav Babinský při zatýkání kousal

Syn litoměřického nádeníka Václav Babinský vstupuje v roce 1816 do armády. Ve vojenském stejnokroji vydrží osm let,...
Rybí delikatesa: Kdo považoval kaviár za lék proti moru?

Rybí delikatesa: Kdo považoval...

Francouzský král Ludvík XV. přijme posla ruského cara Petra Velikého. „Můj panovník vám posílá dar. Naši vyhlášenou...
Animované filmy: Jaká jsou v nich nejoblíbenější zvířata?

Animované filmy: Jaká jsou v nich...

Jaké zvíře z těch nejznámějších animovaných filmů je...
Nejslavnější jídla, které každý na světě zná

Nejslavnější jídla, které každý na...

Kdybyste měli dát dohromady pět jídel, které...
Hry na akciovém trhu: Zabil se největší spekulant všech dob kvůli dluhům?

Hry na akciovém trhu: Zabil se...

„Pokořím Wall Street. Jednou to dokážu,“ šeptá si roku 1891 čtrnáctiletý americký kluk a zatíná v kapse ruku v...
Zajímavosti vesmíru: Jaké jsou nejextrémnější planety?

Zajímavosti vesmíru: Jaké jsou...

Planet je ve vesmíru nevypočítatelné množství. Některé...
Architekt bestie Edmund Forster: Stvoří Hitlera německý psychiatr?

Architekt bestie Edmund Forster:...

Na podzim roku 1918 se ze zakřiknutého doktora Jekylla stává po moci...
Smrt historika Josefa Šusty: Před soudem dal přednost vltavským vodám

Smrt historika Josefa Šusty: Před...

„Rakev nesmí být zahalena státní vlajkou,“ zní v roce 1945 příkaz z ministerstva vnitra. Pohřeb...
Nápad, který nikdo nechce. Co netušíte o bublinkové folii?

Nápad, který nikdo nechce. Co...

„Ne, to se mi moc nelíbí,“ převrací designér v rukou podivný...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.