Když světlo drtí atomy…

Zásoby fosilních paliv na naší planetě se blíží vyčerpání, a tak odborníci hledají nejrůznější cesty, jak zachránit civilizaci před energetickým kolapsem.Zásoby fosilních paliv na naší planetě se blíží vyčerpání, a tak odborníci hledají nejrůznější cesty, jak zachránit civilizaci před energetickým kolapsem.

Z nadějných metod nejdál pokročil výzkum využití laseru pro zažehnutí reakcí, které se jinak odehrávají pouze v nitru hvězd.

K nejnadějnějším variantám získání energie patří využití termojaderné fúze, především v magnetických zařízeních zvaných tokamaky. Existují ale i jiný způsob, jak k tomuto cíli dospět. Jde vlastně o miniaturní vodíkové pumy, které by se odpalovaly rychle za sebou ve speciálním zařízení.

Uvolněná energie by už neničila města a lidi, ale přeměňovala by se v elektřinu.„Nepochybuji o tom, že právě tato metoda povede ke zvládnutí termojaderné fúze pro výrobu elektřiny,“ říká Chand Joshi, profesor elektroinženýrství na University of California at Los Angeles (UCLA), který se tímto problémem zabývá.

Potřebujeme stovky milionů stupňů!Termojaderných reakcí, při nichž se slučováním atomů uvolňuje velké množství energie, existuje celá řada, všechny ale vyžadují obrovské tlaky a teploty. Doslova jim vděčíme za svou existenci, neboť nejenže právě díky těmto reakcím svítí naše Slunce, ale vytvořily i všechny prvky našeho světa i našich těl.

V raných stádiích vesmíru totiž existoval pouze vodík a teprve první generace hvězd z něj termojadernou syntézou „uplácala“ složitější prvky.Hvězdy mají pro takové experimenty ty nejlepší podmínky, především obrovské teploty a tlaky v nitru.

Na Zemi jsou ale obtížně realizovatelné, a tak musejí vědci vybírat pouze takové typy reakcí, které jsou relativně nejproveditelnější. V pozemských podmínkách je nejdostupnější slučování izotopů vodíku deuteria (těžký vodík) s tritiem, protože čím těžší prvek, tím obtížnější je přinutit jeho atomy ke slučování.

I při této reakci (bývá označována jako termojaderná fúze D-T) se ale neobejdeme bez teplot stovek milionů stupňů. Většina fyziků přitom vsadila na zahřívání plazmatu v magnetických nádobách prstencového tvaru (tokamak).

Výhodnější je stavebniceAmeričané jdou ale na problém jinak. V zařízení National Ignition Facility (NIF) se snaží uvolnit energii hvězd pomocí obří soustavy supervýkonných laserů.Příznivci tohoto řešení upozorňují na celou řadu výhod.

Zatímco tokamak je komplikované zařízení, které pracuje pouze jako celek, zařízení pro termojadernou fúzi může mít „stavebnicovou“ architekturu – zvlášť lze vyvíjet lasery, palivové tablety, vstřikovací zařízení, reakční komoru i další komponenty.

Navíc se skládá z desítek stejných laserů, takže pokud se povede vyvinout jeden, ostatní už je záležitostí sériové výroby. To vše vede k naději, že vývoj by mohl být levnější a snadnější, než tomu bylo u magnetických nádob, které nevedly k cíli ani po bezmála půl století mimořádně drahého výzkumu.

Drtivá síla světla!Americká cesta bývá označována jako laserový pulzní ohřev izotopů vodíku, nebo také inerciální fúze. Spočívá v tom, že směs deuteria a tritia se nejdříve upraví do podoby malých pevných tablet (pelet) a posléze umístí do ohniska, na něž ze všech stran míří lasery.

Pak mohutný impuls světelné energie tabletu velikosti fazole na okamžik trvající několik miliardtin sekundy stlačí a zahřeje až na teplotu stovky milionů stupňů a hustotu, která je dvacetkrát vyšší než hustota olova.

V tomto okamžiku dojde k zážehu termonukleární reakce. Při každém takové pulzu se uvolní energie odpovídající spálení asi 15 kilogramů kvalitního uhlí.Pokud se to podaří, bylo by možné na tomto principu stavět elektrárny.

kde teplo bude odváděno chladícím médiem k turbinám s generátory, které vyrobí elektřinu. Protože deuteria je v oceánech Země dost na miliony let a tritium může vznikat ozařováním lithia neutrony přímo v termojaderném reaktoru, vyřešilo by to patrně energetické problémy lidstva jednou provždy.

Přitom laserové pulzní zařízení je levnější a méně těžkopádné, než termojaderné reaktory pracující na principu tokamaku Největším zařízením pro výzkum termojaderné fúze prováděné za pomocí laseru je dnes National Ignition Facility (NIF) v kalifornské Lawrence Livermore National Laboratory, které provozuje University of California pro ministerstvo energetiky USA.

Se stavbou objektu o rozloze fotbalového hřiště se započalo v roce 1997 a první termojaderní zážeh vědci plánovali na tento rok.

Pumy bez jaderných zkoušekMálokterý průkopnický projekt ale běží podle plánů a ani NIF není v tomto ohledu výjimkou. Na zařízení sice již probíhají testy a první experimenty, kompletní dokončení však odborníci neočekávají dřív než v roce 2008.

První zážeh termojaderné reakce by měl přijít o dva roky později. Cílem NIF ale není jen zkoumání termonukleární fúze – mají se zde také provádět testy vedoucí k dokonalejším jaderným zbraním, především modelování nukleárních explozí.

Vědci by tak získali možnost zlepšovat pumy, aniž by museli provádět problematické pokusné nukleární exploze. Vojenský výzkum tvoří převážnou část náplně zařízení. Mezi další pracovní náplň NIF patří i materiálový výzkum a výzkum laserových technologií.

Nejsilnější laser na světě!Srdcem NIF je nejvýkonnější energetický laser na světě. Jeho světlo rozdělí hranoly z uměle vypěstovaných krystalů na 192 svazků. Dráha každého z nich je dlouhá 305 metrů. Ty pak další optika zaostří na cíl, umístěný v kulové reakční komoře o průměru 10 metrů.

NIF se buduje postupně tak, aby bylo možné nákladné zařízení využívat už před jeho definitivním dokončením. Roku 2001 tu začal projekt nazvaný NIF Early Light (NEAL, Rané světlo NIF) který slouží především pro testování.

Na své si ale přijdou i výzkumníci. V květnu 2003 tu například ultrafialový laser v jednom světelném svazku vyrobil energii 10,4 kilojoulů, což je dosud platný světový rekord v této kategorii.Současně vědci testují, zda je kvalita laserových svazků dostatečná pro zažehnutí termojaderné fúze a jestli jsou délka a časový průběh světelného pulsu vhodné pro stlačování a ohřev palivových tablet.

Podařilo se docílit pulsu s trváním 25 nanosekund, což je zatím nejdelší doba dosažená u tohoto typu. Paprsky prvních čtyř dokončených laserů už také zamířily do středu kulové komory na speciální cílový terčík.

Fyzikové přitom zkoumali reakci světla o vysoké energii s hmotou terčíku a produkci rentgenového záření. Všechny tyto poznatky jim pomohou při přípravě závěrečných pokusů, kdy již půjde o zažehnutí skutečné termojaderné reakce.

Cesta k laserové elektrárněV NIF se budou prověřovat jak přímé, tak i nepřímé metody laserového ohřevu tablety se směsí izotopů vodíku. Při přímé metodě působí na cíl bezprostředně paprsky laseru. Nepřímá metoda spočívá v umístění izotopů vodíku do malého válcovitého pouzdra z materiálu o vysoké hustotě, například zlata nebo olova.

Pouzdro přemění laserový puls na rentgenové záření, teprve pak následuje stlačení a zážeh termonukleární reakce.USA laserovou cestu k termojaderné fúzi zřetelně preferuje, což je i jeden z důvodů vlažného postoje k mezinárodnímu projektu tokamaku ITER.

Laserová metoda se ale zkoumá i v dalších zemích, například ve Francii, Velké Británii, Japonsku a jinde. Některé dílčí úkoly řeší také čeští vědci v Ústavu fyziky plazmatu na laserovém systému PALS.

Laserový systém ASTERIX IV dostala Akademie věd České republiky na základě dohody s evropskou organizací EURATOM a německým Institutem Maxe Plancka pro kvantovou fyziku. Krátce nato začala stavba objektu v Praze.

V provozu je od roku 2000.

Kdy zažehneme fúze světlem?S výzkumem laserové fúze se začalo mnohem později než s experimenty na tokamacích, které přitom nevedly ke komerční výrobě energie ani po půlstoletí. Zatímco u tokamaků již existují poměrně konkrétní představy, jak by měla vypadat jejich podoba pro komerční výrobu elektřiny, u laserových systémů zatím jde jen o velmi přibližné návrhy.

V souvislosti s dávkováním palivových tablet, odolností a chlazením reaktorové komory, ochranou proti záření, odebíráním produktů jaderných reakcí a odvodem vzniklé energie ke generátorům existuje celá řada nevyřešených problémů.

Tím spíše si dnes nikdo neodvažuje předpovídat letopočet otevření první laserové elektrárny. Právě problémy tokamaků ale naznačují, že fúze zažehnutá světlem by mohla být pojistkou pro případ, že by dnes preferovaná cesta selhala.

Střelba ze všech stranVhodně uspořádaný laserový systém je schopen dosáhnout hustoty energie potřebné k zapálení termonukleární reakce ve směsi izotopů deuteria a tritia. Podmínkou je, aby tyto izotopy byly uspořádány do malého terčíku s vysokou hustotou, na který jsou laserové svazky zaostřené ze všech stran.

Použití laseru odstraňuje některé problémy magnetických metod zažehnutí termojaderné fúze, především potíže se stabilitou a dobou udržení potřebných podmínek.

Kam míří termojaderná fúze v NIF?Zařízení NIF se buduje v Lawrence Livermore National Laboratory v kalifornském Livermore od počátku 90. let minulého století. Celkový výkon všech laserových paprsků má být po dokončení 500 terawattů, což je tisíckrát víc, než produkce všech elektráren v USA.

Při pokusech s termojadernou fúzí ji 192 laserů naráz během několika málo miliardtin sekundy vyzáří na palivovou tabletu velikosti golfového míčku, obsahující směs deuteria a tritia obalenou beriliem.

Její hustota tak dosáhne jeden kilogram na krychlový centimetr, což je přibližně šestkrát víc, než v nitru Slunce. V současnosti pracují první čtyři lasery, definitivní dokončení se předpokládá roku 2008, první pokusy se zažehnutím termojaderné fúze roku 2010.

Autor: Jan Novák
Rubriky:  Technika
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Až příliš spoléhala na techniku… Za loňskou nehodu autonomního vozu má pykat jeho „řidička“

Až příliš spoléhala na techniku… Za...

Psal se 18. březen roku 2018, když se na silnici v arizonském městě...
V Indii byl vynalezen robot na sběr kokosů

V Indii byl vynalezen robot na...

Také státy, od kterých se po technologické stránce neočekávají zázraky,...
Umělá inteligence z Česka pomáhá chytat zločince po celém světě

Umělá inteligence z Česka pomáhá...

Terorista, jenž se chystá nastoupit do letadla, vězeň, který se pod záminkou...
Domácí monitorování srdce s využitím mobilního telefonu

Domácí monitorování srdce s...

Brandýská nemocnice v současné době nabízí svým pacientům možnost domácího monitorování...
Japonsko investuje do létajících aut. Chtělo by je komercializovat do roku 2023

Japonsko investuje do létajících...

Reálný plán, nebo jen naivní sen? Japonská vláda nedávno oznámila, že hodlá...
Pandemie nahrává „šmírákům“

Pandemie nahrává „šmírákům“

Vaše dítě, žárlivý partner nebo zdánlivý kamarád – tito všichni mohou dostat...
Mechanické ploty nebo elektřina?

Mechanické ploty nebo elektřina?

Desítky tisíc až statisíce kaprovitých ryb ročně táhnou z nádrže Lipno do horní...
Nesmrtelný dvoutakt na závodních okruzích – Výstava motocyklů v Hořicích

Nesmrtelný dvoutakt na závodních...

Městské muzeum ve spolupráci s hořickým historikem motocyklových závodů na okruzích Mgr....
Vlak rychlý jako letadlo

Vlak rychlý jako letadlo

Magneticky levitující vlak je znám pod zkratkou maglev. Provozován je na...
Německo chce lidi donutit ke koupi elektromobilů. Nabíječky budou na každém rohu…

Německo chce lidi donutit ke koupi...

Německo se ze všech sil snaží urychlit přechod na elektromobily. Proto se...

Nenechte si ujít další zajímavé články

I přes Downův syndrom dokázali plnit svůj sen

I přes Downův syndrom dokázali...

I přes svůj handicap dokázali jít za svým snem a všem...
Skotské bojiště Culloden Moore vyděsilo i slavnou spisovatelku

Skotské bojiště Culloden Moore...

Inverness je nádherné skotské město ležící na řece Ness nedaleko známého...
„Influenceři“ historie: Newton s Ježíšem?

„Influenceři“ historie:...

Největší influenceři nebo také nejvlivnější lidé historie...
Opavští Přemyslovci: Schopní diplomati, vrah a černá ovce

Opavští Přemyslovci: Schopní...

Papež Alexandr IV. uznává v říjnu roku 1260 nemanželské děti českého krále Přemysla...
Jaká zvířata žijí po smrti?

Jaká zvířata žijí po smrti?

Život po smrti zní spíš jako námět na horor. Ve skutečnosti...
Ustřelí si tvář a změní život. Slavný dramatik pak pozvedne Národní divadlo

Ustřelí si tvář a změní život....

„Tak dobrou noc, drahá,“ zamumlá Ladislav Stroupežnický a zabouchne za...
Zrod japonského ekonomického tygra: První železnice vznikla díky britské pomoci

Zrod japonského ekonomického tygra:...

Japonsko zažívá ve 2. polovině 19. století převratné změny. V roce 1869 dochází v...
Proměna Japonska: Reformy císaře Meidžiho poslaly samuraje do důchodu

Proměna Japonska: Reformy císaře...

„Vrazil dýku tu hluboko pod pasem do levé strany těla, táhl jí pomalu ku straně pravé a...
Bankéř Jaroslav Preiss: Vytvořil tajné fondy pro prezidenta Masaryka?

Bankéř Jaroslav Preiss: Vytvořil...

„My jsme proti vnášení třídního boje do naší společnosti. My nechceme třídní boj, ale třídní kompromis,“...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.