Domů     Technika
Průvodce TIG Svářečkou

komerční sdělení

Svařování wolframovým inertním plynem (TIG) je svařovací proces, při kterém wolframová elektroda vytváří oblouk, který je chráněn inertním plynem, ve většině případů čistým argonem.

Takhle fungují TIG svářečka.

Plyn chrání oblouk, wolframová elektroda není spotřebována obloukem, ale poskytuje přechodový bod pro oblouk. Oblouk ohřívá kov. V TIG svářečkách, když má kov vhodnou teplotu, může se do oblouku vložit podobná kovová plnící tyč, aby se vytvořila kaluž roztaveného kovu k vyplnění svarového spoje. A proto bych si zvolil TIG svářečku.

AC DC svařování

Existují dva režimy TIG svařování:

Stejnosměrný proud (DC), používaný pro všechny kovy kromě hliníku a slitin hořčíku.

Střídavý proud (AC) používaný pouze pro slitiny hliníku a hořčíku.

První otázka tedy zní: „Je svařování hliníku požadavkem?

Pokud ano, pak je zapotřebí TIG svařovací stroj schopen AC. Většina moderních AC TIG svařovacích strojů je invertorového typu, který má také stejnosměrnou kapacitu. Takže AC/DC TIG svařovací stroj bude schopen svařovat většinu kovů.

Pokud svařování hliníku není nutné, pak bude vhodný TIG svařovací stroj jen se stejnosměrným proudem.

Dodávka plynu

TIG svařování vyžaduje vložkové plynové stínění, proto je zapotřebí způsob připojení plynu a jeho zavedení do svaru.

Sofistikovanější TIG svařovací stroje budou mít zabudovaný plynový ventil, který TIG svařovací stroj zapne po stisku spouště hořáku. Tyto TIG svařovací stroje budou mít obvykle přidány funkce dodatečného plynu a předplynu, kde může uživatel nastavit čas – obvykle sekundy – pro přidání plynu k pročištění svarových oblastí před zahájením svařování a pokračování v proudění plynu, aby se zabránilo kontaminaci svarové lázně kyslíkem , a umožnit ochlazení svarové koupele na konci svaru.

Méně sofistikovaný TIG svařovací stroj nemá zabudovaný plynový ventil a bude vyžadovat hořák se zabudovaným ručně ovládaným ventilem.

Další otázkou, kterou je třeba si položit, je: ‚Kolik se bude provádět TIG svařování a jsou potřebné výhody plynového ventilu?‘

Pokud je hlavním úkolem TIG svařování, pak bude zapotřebí TIG svařovací stroj s plynovým ventilem. Pokud je TIG svařování potřebné pouze pro příležitostné práce nebo dlouhé TIG svařovací práce, tj . . při aplikacích obkladů pak může být ruční plynový ventil zcela dostačující.

Spuštění oblouku

Při TIG svařování je hlavním faktorem spuštění oblouku. Existují tři styly startu.

Scratch start

 Toto je starší styl startovací techniky obvykle spojený se TIG svařovacím strojem typu transformátoru. Teď to není tak běžné u invertorových TIG svařovacích strojů.

Lift start

 Tento typ startu je možný u invertorového TIG svařovacího stroje. Wolfram se jemně dotkne úlohy, řídící obvod zaznamená dotek a čeká, až se wolfram zvedne z úlohy, a pak rychle zapálí oblouk pro svařování.

HF start

 HF start umožňuje spuštění oblouku, aniž by se wolfram dotkl úlohy. Tato funkce může být důležitá, pokud je problémem riziko kontaminace wolframu, například svařování tlakových nádob.

Dálkové ovládání

Existují čtyři různé scénáře dálkového ovládání TIG svařovacích strojů:

Bez dálkového ovládání – startování je zvedacím obloukem, plyn ručním ventilem, aktuální nastavení se nastavují pomocí ovládacího panelu TIG svařovacího stroje.

Dálkové ovládání spouště hořáku – spouští sekvenci předplynu HF start nebo zvedací oblouk. Potom konec posloupnosti svařování.

Dálková spoušť hořáku a ovládání proudu – dálková spoušť hořáku spouští HF start sekvence předplynu nebo zvedací oblouk. Nastavení proudu lze ovládat iz hořáku během svařování, což může být užitečné pro regulaci tepla do svaru, zejména hliníku, kde je na začátku svařování zapotřebí dodatečné teplo pro předehřátí.

Dálkové nožní ovládání startů oblouku a proudu – nožní ovladač lze připojit k TIG svařovacímu stroji přes stejný konektor jako dálkový hořák. Stisknutím pedálu nožního ovladače se spustí oblouk, poté další stisk pedálu zvýší proud.

To umožňuje ovládání proudu bez použití rukou a jemné nastavení během svařování.

Vlastnosti svařování střídavým proudem

Střídavé svařovací invertorové TIG svařovací stroje používají vysoko proudé elektronické spínače, obvykle IGBT, k vytvoření výstupu střídavého svařování.

Frekvence střídavého proudu se může měnit, obvykle na 30-150 Hz. K zaostření oblouku lze použít vysokofrekvenční střídavý proud, což je užitečné při tenkých materiálech a úzkých rozích. Dobrá kontrola AC bilance, nebo množství pozitivního cyklu k negativnímu cyklu, je důležitá.

Změna vyvážení je důležitá pro ovlivnění množství povrchového čištění, které oblouk provádí.

Velikost TIG svařovacího stroje

Určení velikosti TIG svařovacího stroje může být rovnováhou mezi očekáváními každodenního používání a možnými jednorázovými, velkými pracovními očekáváními, jakož i náklady. Pokud se svařuje pouze tenkostěnná ocelová trubka, 140 A může být docela dostačující, zatímco 5 mm hliník by vyžadoval alespoň 200 A.

Pracovní cyklus

Pracovní cyklus TIG svařovacího stroje je ukazatelem schopnosti TIG svařovacího stroje pracovat delší dobu. Pracovní cyklus je definován jako doba, po kterou může TIG svařovací stroj pracovat při maximálním výkonu při teplotě okolí 40 °C, během 10minutového cyklu.

Pracovní cyklus je vyjádřen v procentech. Takže 20% pracovní cyklus je maximální proud po dobu dvou minut, pak osm minut bez proudu, pak zopakujte.

Pokud je výstupní proud nižší než, pracovní cyklus se zvýší. Specifikace TIG svařovacího stroje udává maximální pracovní cyklus a proud, 100% proud pracovního cyklu a často 60% proud pracovního cyklu. Tyto údaje pomohou určit požadavky.

Pokud je aplikací mnoho malých spojů, z nichž každý vyžaduje určitou dobu pro nastavení, pak bude pracovní cyklus 20 procent docela dostačující. Při svařování velkých obkladových prací se doporučuje vyšší pracovní cyklus.

Dobrým výchozím bodem pro výběr dobrého TIG svařovacího stroje je řada Miller od Welding Industries of Australia. V sérii Arc a TIG svařování je sedm jednotek, které jsou vhodné pro celou řadu aplikací, jako je údržba, námořní svařování a svařování plechů.

Související články
Omezení rychlosti na 30 km/h vede podle nového výzkumu k sedmatřicetiprocentnímu poklesu úmrtí při dopravních nehodách. Kromě toho se při takovém snížení rychlosti snižuje jak hluk, tak i emise a spotřeba paliva. Studie, jejíž autory jsou řečtí vědci George Yannis a Eva Michelaraki, se zaměřila na kvantifikaci v oblasti bezpečnosti, životního prostředí, energie, dopravy, obyvatelnosti […]
Fyzika kolem nás, v nás, ale i daleko od nás, je fascinující. Určuje pravidla všem ostatním vědám. Fyzika není jen dílem ve velké skládačce, nýbrž je podkladem, na kterém leží vše. Tato rubrika představuje příběh jedné z částic. Tentokrát elektronu… Elektrony jsou malé částice s velmi malou hmotností, ale jejich vliv je obrovský. Váží pouze […]
Před více než 100 lety dal Jaroslav Heyrovský světu revoluční analytickou metodu – polarografii. Před téměř 70 lety vyrobili Češi plastickou trhavinu Semtex a ve stejné době Otto Wichterle dokončoval první hydrogelovou kontaktní čočku pro korekci optických vad zraku. V nedávnější době profesor Holý vyvinul nové skupiny léčiv, antivirotik, proti HIV/AIDS, virovou hepatitidu typu B či […]
Česká republika hledá cesty, jak snížit uhlíkové emise, k čemuž se zavázala v rámci tak zvaného Green Dealu, a to zejména z provozu benzinových a naftových motorů v dopravě. U železniční dopravy by k tomu vedle elektrizace železnic mohl přispět i provoz vlaků na vodík či baterie. Dle závěrů nejnovější studie by mohly být tyto […]
Vědci z centra CATRIN Univerzity Palackého v Olomouci vyvinuli nový senzor pro měření v rozmezí od 10 do 90 stupňů Celsia. Na revoluční technologii spolupracovali s odborníky ze Západočeské univerzity (ZČU) v Plzni a Vysoké školy báňské – Technické univerzity Ostrava (VŠB-TUO). Základem je nový grafenový derivát, díky kterému je senzor přesný a spolehlivý, zároveň […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz