Co dokáže zmražený čip? Nový rekord v rychlosti křemíku

Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.

Experimenty, které nyní provádějí společně vědci IBM a institutu Georgia Tech (USA), jsou součástí projektu, který má za úkol zjistit extrémní rychlostní meze nových čipů. Čip, jenž byl při demonstraci použit, patří mezi prototypy tzv. čtvrté generace výrobní technologie SiGe (křemík–germanium). Běžné čipy, které jsou například umístěny v procesorech normálních mobilních telefonů pracují s frekvencí 2 GHz, nový čip však zvládne svou práci s frekvencemi, které jsou vyšší než 500 GHz. Zpracuje tak 500 miliard cyklů za sekundu.
Není to ovšem tak jednoduché. Zmíněný extrémní výkon by jen těžko vznikal za normálních přírodních podmínek, které známe na naší planetě. Za velmi nízkých teplot jsou totiž čipy rychlejší, čip proto musel být zmražen na teplotu, která se velmi blíží absolutní nule (-273,15 °C). V laboratoři tak byla, díky chladícím médiím, jakým může být třeba helium, dosažena teplota -268,33 °C. 

Může to fungovat i za normální teploty?
Na první pohled by se mohlo zdát, že vzhledem k takové nízké teplotě není tento objev možné uplatnit v každodenní praxi. Čipu prostředí, pro které je mráz slabé slovo, dělá dobře, ale člověku by v takových podmínkách byla asi přece jen trochu zima.
Jenže, počítačové simulace ukázaly, že technologie SiGe, na které je nový čip založen, by mohla fungovat i při normální teplotě. Koneckonců, už nyní lze při pokojové teplotě dosáhnout hodnoty 350 GHz. A nejen to, teoreticky lze již dosáhnout i vyšších výkonů, blížících se k magické hranici 1000 GHz.

Jen křemík nestačí
Samotná technologie SiGe není nikterak nová, IBM ji představila už v roce 1989 a o devět let později se SiGe dočkala i masového využití v tranzistorech, potažmo v mikročipech.
V čem vlastně technologie SiGe spočívá? Drtivá většina dnešních čipů obsahuje křemík, to není nic nového. Křemík je sice pro výrobu polovodičových součástek ideální prvek, což technologové dávno vědí, ale zde je ještě přidána další složka, a to germanium. Kombinace křemíku a germania pak způsobuje, že mikročip dokáže pracovat podstatně rychleji a nevyžaduje příliš velký přísun energie. Tím je jeho provoz i úspornější.

Tajemství výroby krystalu
Protože pro výrobu většiny polovodičových součástek je polykrystalický křemík, který obsahuje malé množství nečistot, nepoužitelný, používá se křemík monokrystalický. Obvyklou metodou pro jeho výrobu je řízená krystalizace z taveniny, nazývaná Czochralského proces. Při něm je do křemíkové taveniny vložen zárodečný krystal vysoce čistého křemíku. Ten se přitom otáčí a pulzuje podle předem přesně definovaného programu, přičemž teplota taveniny je také velmi pečlivě monitorována a řízena.
Celý proces probíhá v nádobách z velice čistého křemene v inertní (netečné) atmosféře argonu. Na zárodečném krystalu se pak vylučují další vrstvy mimořádně čistého křemíku. Výsledný produkt, tedy křemíkový ingot, pak může mít až 40 centimetrů v průměru a délku do dvou metrů. Tento ingot je přitom tvořen jediným krystalem.
Vyrobená „tyčka“ se poté po ochlazení řeže na půl milimetru tenké vrstvy, leští se a teprve pak mají výrobny polovodičových součástek svou potřebnou výchozí surovinu. 

Nezvýší se výrobní náklady
Vývojáři z IBM počítají, že superrychlý křemík by mohl být využit i v mnoha dalších oblastech. Své uplatnění bezesporu najde v armádních systémech nebo v systémech pracujících na palubách kosmických lodí. Časem se ho dočkáme třeba i v běžné mobilní komunikaci. Nespornou výhodou, kterou si pochvalují zejména manažeři firem vyrábějících elektroniku, je i to, že výroba takových čipů nezvyšuje současné náklady.
Ani odborná veřejnost neskrývá své nadšení. “Společnosti Georgia Tech a IBM vůbec poprvé v historii ukázaly, že s komerční technologií na bázi křemíku, s použitím velkých plátů a levných výrobních technik kompatibilních s křemíkem, lze dosáhnout rychlosti až půl biliónu cyklů za sekundu,” prohlásil John D. Cressler, profesor na katedře elektrického a počítačového inženýrství amerického institutu Georgia Tech. “Tento výzkum nově definuje hranice toho, čeho jsme schopni dosáhnout se SiGe nanotechnologiemi.”

Absolutní nula
je teplota při níž ustane tepelný pohyb částic čímž prakticky přestává existovat hmota. Nelze ji vlastně nikdy dosáhnout, ovšem řada laboratoří se k ní již velmi přiblížila. Obvykle je měřena ve stupních kelvina. Absolutní nula tak odpovídá 0 K. (– 273,15°C nebo – 459,67 °F).

Křemík
je polokovový prvek, kterého v zemské kůře rozhodně není málo. Tvoří 13% hmoty Země, ostatních kamenných planet a meteoritů. Slouží jako základní materiál pro výrobu polovodičových součástek, ale i jako základní surovina pro výrobu skla a je významnou součástí keramických a stavebních materiálů. Objev křemíku je připisován švédskému chemikovi J.Jacobu Berzeliovi (1824).

Germanium
je poměrně velmi řídce se vyskytující polokov, nalézající se obvykle jako příměs v rudách zinku a stříbra. Objevil jej roku 1886 německý chemik Clemens A. Winkler a pojmenoval jej podle své vlasti. Zajímavé je, že jeho existence byla předpovězena tvůrcem periodické tabulky prvků, ruským chemikem Dmitrijem Mendělejevem, který jej nazýval eka-silicium a poměrně přesně určil základní fyzikálně-chemické vlastnosti tohoto prvku.
V pevném skupenství se germanium chová jako polovodič, naproti tomu v kapalném skupenství je kovem, podobně jako třeba rtuť. Kromě polovodičů nachází germanium uplatnění i při výrobě světlovodné optiky, protože jeho přítomnost v materiálu optických vláken podstatným způsobem zvyšuje index lomu materiálu. Tato vlastnost se uplatní i ve výrobě speciálních optických součástek jako jsou čočky pro kamery s širokým úhlem záběru nebo optika pro zpracování signálu v infračervené oblasti spektra (přístroje pro noční vidění).

Rubriky:  Technologie
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Vědci získávají oxid křemičitý ze slupek od rýže

Vědci získávají oxid křemičitý ze...

Liberečtí vědci objevili metodu, kterou lze získat oxid křemičitý ze slupek od...
Partnerská válka o prostor v posteli? Ford nabízí řešení, inspirované systémem udržování jízdních pruhů

Partnerská válka o prostor v posteli? Ford...

Má-li Váš partner tendenci opouštět svou stranu postele a neustále se...
Zkušební zážeh motoru Raptor

Zkušební zážeh motoru Raptor

Společnost SpaceX se netají svými vesmírnými ambicemi. V jejím...
Laserový systém dokáže přenášet zvuk až k uchu příjemce

Laserový systém dokáže přenášet...

Představte si tu možnost dostávat signály přímo až k uchu, aniž by je mohl zaznamenat...
Panda do Evropy?

Panda do Evropy?

Čínská společnost DeepBlue Technology představila začátkem tohoto roku na...
Umělá inteligence překoná lékaře – v budoucnu bude rozpoznávat vzácné genetické poruchy

Umělá inteligence překoná lékaře – v...

Na trhu se již lze setkat s chytrými telefony, které v sobě mají...
Kdo bude slídilem roku? Nejvíce nominací získal Facebook

Kdo bude slídilem roku? Nejvíce...

Z 34 návrhů na slídila za loňský rok patřily hned 3 populární sociální...
Marketingu už se nevyhne ani vesmír. Rusové se chystají umístit reklamu na oběžnou dráhu

Marketingu už se nevyhne ani vesmír....

Ruská společnost StartRocket vzbudila na počátku ledna velký rozruch...
Aplikace vám ušetří za elektřinu

Aplikace vám ušetří za elektřinu

Nová aplikace pro mobilní telefony, vyvinutá na Vysokém učení technickém...
Nabíjení elektromobilů snadno a rychle? V Kanadě mají jedinečnou technologii

Nabíjení elektromobilů snadno a...

Kanadská společnost GBatteries má na dosah ruky technologii, která dokáže...

Nenechte si ujít další zajímavé články

Aktuálně: Vztek Rusů nad nedostavěným kosmodromem

Aktuálně: Vztek Rusů nad...

Ruský předseda vlády Dmitrij Medveděv nešetřil kritikou vůči agentuře Roskosmos...
VIDEO: Vtipné pády na lanovce

VIDEO: Vtipné pády na lanovce

Pokud nejste nadaní pro zimní sporty a pro jízdu na...
Jak nejlépe vnímat krásu? Podle nových poznatků “osamoceně”!

Jak nejlépe vnímat krásu? Podle...

Proč visí Mona Lisa v Louvru o samotě? Holá zeď, která obrazu dělá společnost, se...
Tajuplný Teotihuacán: Místo, kde se podle Aztéků člověk stane bohem

Tajuplný Teotihuacán: Místo, kde se...

Teotihuacán byl ve své době nejvýznamnějším náboženským centrem Střední...
Dosahoval Václav Antonín Kounic diplomatické úspěchy díky pletkám se ženami?

Dosahoval Václav Antonín Kounic...

Císařovna Marie Terezie roztrhne dopis s datem 9. září 1946. „Trpím horečkami....
Co skrývá vnitřek naší planety?

Co skrývá vnitřek naší planety?

Lidstvo už nahlédlo do hlubokého vesmíru, ale zároveň mu zůstává skryta...
Umělá krása: Možná se tak narodila, možná si to přilepila!

Umělá krása: Možná se tak narodila,...

„Ženy se dělají krásnými jen proto, že oko muže je vyvinuto lépe než...
Japonský rock: Metalové školačky Babymetal

Japonský rock: Metalové školačky...

Jiný kraj, jiný mrav, říká se. Japonsko je hodně jiný kraj, což má...
VIDEO: Největší krab na světě vylezl ze skořápky a proměnil se v pavouka

VIDEO: Největší krab na světě...

Japonského kraba zachytila v americkém mořském světě kamera, jak vylézá ze své...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.