Co dokáže zmražený čip? Nový rekord v rychlosti křemíku

Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.

Experimenty, které nyní provádějí společně vědci IBM a institutu Georgia Tech (USA), jsou součástí projektu, který má za úkol zjistit extrémní rychlostní meze nových čipů. Čip, jenž byl při demonstraci použit, patří mezi prototypy tzv.

čtvrté generace výrobní technologie SiGe (křemík–germanium). Běžné čipy, které jsou například umístěny v procesorech normálních mobilních telefonů pracují s frekvencí 2 GHz, nový čip však zvládne svou práci s frekvencemi, které jsou vyšší než 500 GHz.

Zpracuje tak 500 miliard cyklů za sekundu. Není to ovšem tak jednoduché. Zmíněný extrémní výkon by jen těžko vznikal za normálních přírodních podmínek, které známe na naší planetě. Za velmi nízkých teplot jsou totiž čipy rychlejší, čip proto musel být zmražen na teplotu, která se velmi blíží absolutní nule (-273,15 °C).

V laboratoři tak byla, díky chladícím médiím, jakým může být třeba helium, dosažena teplota -268,33 °C.

Může to fungovat i za normální teploty?Na první pohled by se mohlo zdát, že vzhledem k takové nízké teplotě není tento objev možné uplatnit v každodenní praxi. Čipu prostředí, pro které je mráz slabé slovo, dělá dobře, ale člověku by v takových podmínkách byla asi přece jen trochu zima.

Jenže, počítačové simulace ukázaly, že technologie SiGe, na které je nový čip založen, by mohla fungovat i při normální teplotě. Koneckonců, už nyní lze při pokojové teplotě dosáhnout hodnoty 350 GHz.

A nejen to, teoreticky lze již dosáhnout i vyšších výkonů, blížících se k magické hranici 1000 GHz.

Jen křemík nestačíSamotná technologie SiGe není nikterak nová, IBM ji představila už v roce 1989 a o devět let později se SiGe dočkala i masového využití v tranzistorech, potažmo v mikročipech. V čem vlastně technologie SiGe spočívá?

Drtivá většina dnešních čipů obsahuje křemík, to není nic nového. Křemík je sice pro výrobu polovodičových součástek ideální prvek, což technologové dávno vědí, ale zde je ještě přidána další složka, a to germanium.

Kombinace křemíku a germania pak způsobuje, že mikročip dokáže pracovat podstatně rychleji a nevyžaduje příliš velký přísun energie. Tím je jeho provoz i úspornější.

Tajemství výroby krystaluProtože pro výrobu většiny polovodičových součástek je polykrystalický křemík, který obsahuje malé množství nečistot, nepoužitelný, používá se křemík monokrystalický. Obvyklou metodou pro jeho výrobu je řízená krystalizace z taveniny, nazývaná Czochralského proces.

Při něm je do křemíkové taveniny vložen zárodečný krystal vysoce čistého křemíku. Ten se přitom otáčí a pulzuje podle předem přesně definovaného programu, přičemž teplota taveniny je také velmi pečlivě monitorována a řízena.

Celý proces probíhá v nádobách z velice čistého křemene v inertní (netečné) atmosféře argonu. Na zárodečném krystalu se pak vylučují další vrstvy mimořádně čistého křemíku. Výsledný produkt, tedy křemíkový ingot, pak může mít až 40 centimetrů v průměru a délku do dvou metrů.

Tento ingot je přitom tvořen jediným krystalem. Vyrobená „tyčka“ se poté po ochlazení řeže na půl milimetru tenké vrstvy, leští se a teprve pak mají výrobny polovodičových součástek svou potřebnou výchozí surovinu.

Nezvýší se výrobní nákladyVývojáři z IBM počítají, že superrychlý křemík by mohl být využit i v mnoha dalších oblastech. Své uplatnění bezesporu najde v armádních systémech nebo v systémech pracujících na palubách kosmických lodí.

Časem se ho dočkáme třeba i v běžné mobilní komunikaci. Nespornou výhodou, kterou si pochvalují zejména manažeři firem vyrábějících elektroniku, je i to, že výroba takových čipů nezvyšuje současné náklady.

Ani odborná veřejnost neskrývá své nadšení. „Společnosti Georgia Tech a IBM vůbec poprvé v historii ukázaly, že s komerční technologií na bázi křemíku, s použitím velkých plátů a levných výrobních technik kompatibilních s křemíkem, lze dosáhnout rychlosti až půl biliónu cyklů za sekundu,“ prohlásil John D. Cressler, profesor na katedře elektrického a počítačového inženýrství amerického institutu Georgia Tech.

„Tento výzkum nově definuje hranice toho, čeho jsme schopni dosáhnout se SiGe nanotechnologiemi.“

Absolutní nula je teplota při níž ustane tepelný pohyb částic čímž prakticky přestává existovat hmota. Nelze ji vlastně nikdy dosáhnout, ovšem řada laboratoří se k ní již velmi přiblížila. Obvykle je měřena ve stupních kelvina.

Absolutní nula tak odpovídá 0 K. (– 273,15°C nebo – 459,67 °F).

Křemík je polokovový prvek, kterého v zemské kůře rozhodně není málo. Tvoří 13% hmoty Země, ostatních kamenných planet a meteoritů. Slouží jako základní materiál pro výrobu polovodičových součástek, ale i jako základní surovina pro výrobu skla a je významnou součástí keramických a stavebních materiálů.

Objev křemíku je připisován švédskému chemikovi J.Jacobu Berzeliovi (1824).

Germanium je poměrně velmi řídce se vyskytující polokov, nalézající se obvykle jako příměs v rudách zinku a stříbra. Objevil jej roku 1886 německý chemik Clemens A. Winkler a pojmenoval jej podle své vlasti.

Zajímavé je, že jeho existence byla předpovězena tvůrcem periodické tabulky prvků, ruským chemikem Dmitrijem Mendělejevem, který jej nazýval eka-silicium a poměrně přesně určil základní fyzikálně-chemické vlastnosti tohoto prvku.

V pevném skupenství se germanium chová jako polovodič, naproti tomu v kapalném skupenství je kovem, podobně jako třeba rtuť. Kromě polovodičů nachází germanium uplatnění i při výrobě světlovodné optiky, protože jeho přítomnost v materiálu optických vláken podstatným způsobem zvyšuje index lomu materiálu.

Tato vlastnost se uplatní i ve výrobě speciálních optických součástek jako jsou čočky pro kamery s širokým úhlem záběru nebo optika pro zpracování signálu v infračervené oblasti spektra (přístroje pro noční vidění).

Autor: Martin Janda
Rubriky:  Technologie
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

FUTTEC i pro využití v extrémních zimních podmínkách

FUTTEC i pro využití v extrémních...

Nepříznivé klimatické podmínky, které v uplynulých týdnech potrápily...
Výzkumníci z FIT VUT vyvinuli novou metodu pro rozšířenou realitu

Výzkumníci z FIT VUT vyvinuli novou...

Chcete si v přírodě vyfotit hezký snímek mobilem. Namíříte kameru na...
Emirates otestuje mobilní aplikaci TrustOne

Emirates otestuje mobilní...

Společnost Emirates uzavřela partnerství s GE Digital a TE Food, aby...
Česko umí monitorovat šíření britské varianty COVID-19

Česko umí monitorovat šíření...

PCR testy společnosti DIANA Biotechnologies díky originálnímu designu...
Analyze MyDrives Edge pro oblast pohonů

Analyze MyDrives Edge pro oblast...

Společnost Siemens uvádí na trh svou první edge aplikaci Analyze MyDrives...
Digitální revoluce v zemědělství

Digitální revoluce v zemědělství

Autonomní systémy, programy pro digitální řízení farem, bezpilotní prostředky (drony) a...
Americké námořnictvo dostane nová chytrá torpéda

Americké námořnictvo dostane nová...

Torpéda mají své místo i v armádě 21. století. Pokud jsou tedy...
Experimenty na mezinárodní vesmírné stanici s pomocí Česka

Experimenty na mezinárodní...

Létání do vesmíru i pobyt v něm se už brzy stane pro astronauty...
Siemens představil ultra výkonnou dobíjecí stanici

Siemens představil ultra výkonnou...

Společnost Siemens Smart Infrastructure představila novou ultra výkonnou dobíjecí...
Úspěch českého SPACE týmu společnosti Atos

Úspěch českého SPACE týmu...

Český SPACE tým společnosti Atos se bude podílet na vývoji testovacího zařízení...

Nenechte si ujít další zajímavé články

Vietnamci: Co znamená jejich příjmení a kolik jich v ČR žije?

Vietnamci: Co znamená jejich...

V České republice žije podle oficiálních statistik 61 000 Vietnamců. Jedná...
Mormoni: Modlitby, kasina i polygamie

Mormoni: Modlitby, kasina i...

Životy zasvětili odříkávání modliteb a pečlivému studiu posvátného písma....
Mileva Einsteinová se kvůli manželovi vzdala kariéry

Mileva Einsteinová se kvůli...

„Bez tebe postrádám sebedůvěru, potěšení z práce, radost ze života – krátce řečeno: Bez tebe není můj život...
Miliardáři, kteří přišli o všechno

Miliardáři, kteří přišli o všechno

Představa, že se stanete miliardářem a za pár let skončíte...
Proč německý básník Goethe chyběl u úmrtního lože svojí manželky?

Proč německý básník Goethe chyběl u...

Básník Johann Wolfgang Goethe se 12. července 1788 prochází parkem podél řeky Ilm v...
Stíhačkám Britové nevěří, pak se stanou jejich průkopníky

Stíhačkám Britové nevěří, pak se...

O vývoj v oblasti stíhacího letectví se předně postaraly tři velmoci....
Zasloužený odpočinek aneb Jak člověk k důchodu přišel

Zasloužený odpočinek aneb Jak...

Naše životní cesta je dlouhá a leckdy pořádně trnitá, na konci té...
Mosad: Ti, kteří dostali Eichmanna

Mosad: Ti, kteří dostali Eichmanna

„Je potřeba zřídit Ústřední agenturu pro bezpečnostní a zpravodajské problémy,“...
Badatelský oříšek: Která říše byla největší v historii?

Badatelský oříšek: Která říše byla...

V dějinách lidstva najdeme hned několik významných říší, které by se...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.