Nadlidská síla umělých svalů je za dveřmi!

Umělé svaly se těm našim den ode dne přibližují. Jak dlouho ještě potrvá, než zcela předčí svou biologickou předlohu? Řešení již klepe na dveře.Umělé svaly se těm našim den ode dne přibližují. Jak dlouho ještě potrvá, než zcela předčí svou biologickou předlohu? Řešení již klepe na dveře.

Většina lidí si možná řekne, že pořádat soutěže v páce mezi lidmi a roboty je holý nesmysl. Stroje přeci dokáží zvedat tuny nákladu a nečiní jim to žádné potíže. Jak by je mohl porazit obyčejný člověk?

Jenže ve skutečnosti se věci mají poněkud jinak. Takové soutěže jsou skutečně nefér, jenže vůči robotům. Na prvním takovém klání pořádaném v loňském roce v kalifornském San Diegu je dokázala porazit i sedmnáctiletá dívka.

Hrubá síla není všechnoPro mnohé byla skutečnost, že se systémy umělých svalů nechávaly pokládat od lidských soupeřů jako kuželky jeden po druhém, velkým překvapením. Samotný organizátor neobvyklého klání, Yoseph Bar-Cohen z Jet Propulsion laboratory v kalifornské Pasadeně, však přesně takový výsledek očekával.

Umělé svaly se sice svými vlastnostmi snaží napodobit naše lidské, nicméně zatím jim to příliš nejde. Skutečnost, že jsou schopny udržet až stonásobek hmotnosti, než zvládne naše paže (dokázali bychom tak jednou rukou zvednout motocykl nebo i menší automobil), k poražení člověka zkrátka nestačí.

„Umělé svaly vypadají podobně jako biologické, nicméně mechanismus jejich práce se od nich zcela liší,“ upřesňuje Bar-Cohen. „Chtěli jsme zjistit, na co se musíme při dalším vývoji soustředit, aby jednou mohly bez potíží člověka v páce porazit.

“ Chce soutěž pořádat každý rok až do té doby, kdy umělá paže dokáže porazit mistra světa v páce. To bude vyžadovat značné vylepšení nejen síly, ale i rychlosti reakce a vytrvalosti.

Díly pro naše opotřebovaná tělaUmělé svaly vědci vyvíjejí zhruba 40 let a za tu dobu už vyzkoušeli řadu nejrůznějších materiálů – plasty, látky podobné gumě, gely a pozadu nezůstaly ani kovy. Všechny výtvory spojovala jediná podmínka, musely být, podobně jako pravé svaly, schopny zmenšovat a opětovně zvětšovat svou délku.

Jedině v tom případě se totiž hodí pro využití, pro něž je klasické mechanické řešení se silnými písty a běžným pohonem zcela nedostupné, např. pro mikroroboty nebo náhradní díly pro naše opotřebovaná těla.

Klasický stroj prostě nelze donutit k hladkému přirozenému pohybu, který by umožňoval skákání, šplhání nebo běh dlouhé tratě, a přitom si vystačil s palivem, jež by se vešlo do plechovky od piva.Vědci potřebují svaly, které by jim umožnily vyvinout androidní roboty ještě více podobné člověku, lehčí a obratnější protézy nebo dokonce umělé vnitřní orgány, jako je například srdce nebo bránice.

Jak udržet ve svalech sílu?Velkým problémem je udržet v robotických svalech dostatečnou sílu, aniž by se musely zásobit velkým množství paliva nebo vybavit objemnými bateriemi. Opomenutelná není ani poruchovost.

Zatímco biologické svaly se po zranění nebo poškození při nemoci samy zregenerují, opotřebení materiálu se bez pomoci z vnějšku nevyřeší. I z tohoto důvodu se vědci snaží nalézt látku, která by se svými vlastnostmi blížila svalům.

Počátky podobných snah sahají až do roku 1880, kdy německý fyzik Wilhelm Rőntgen objevil rentgenové záření. Při svých pokusech zjistil, že gumový proužek se pod vlivem elektrického pole může lehce prodloužit.

Nicméně teprve v posledních několika málo desetiletích začali technologové vyvíjet materiály, které jsou schopny výrazného pohybu o dostatečné síle.

Nepřekonaný lidský vzorPřestože se tomuto problému dnes věnují desítky laboratoří po celém světě, dosáhnout kvalit opravdových svalů nebude nijak jednoduché. Naše svaly jsou totiž lehké, a přitom dokáží rychle reagovat na nervové podněty a měnit vlastní délku až o 20 %.

Co je však mnohem důležitější, mohou přizpůsobovat sílu tahu kladeným požadavkům jednoduchým „odpojováním“ a „zapojováním“ svalových vláken. Mohou se za celý lidský život smrštit a natáhnout zpět v řádech desítek až stovek miliard cyklů.

Dokážou přeměňovat energii chemických vazeb na energii mechanickou s efektivitou, která často překoná i produkci tepla spalovacím motorem, následné ztráty při převodu na mechanickou nepočítaje.

Svaly pro mechanické vojákySoučasné polymery jsou schopny hravě překonat jednu z vlastností našich svalů, nicméně všechny parametry najednou sledují jen z uctivé vzdálenosti. Některé z nich jsou sice stokrát silnější než naše svaly, ale dosahují jen mizivé rychlosti.

Jiné zase neuzvednou ani sklenici s vodou, zato se dokáží smrštit tisícinásobně rychleji než naše. Největší překážku však představuje způsob využití energie. „Rádi bychom vyvinuli svaly, které by šlo pohánět látkami s energetickou hodnotou srovnatelnou s potravinami,“ říká k tomu Bar-Cohen.

To bylo i stěžejním bodem projektu, který připravila americká armádní agentura DARPA ve spolupráci s Nanotechnologickým ústavem Texaské univerzity v Dallasu. Vědci dostali za úkol vyvinout umělé svaly poháněné vysoce energetickým palivem, jako je například alkohol nebo nafta.

DARPA je potřebovala pro roboty, kteří by na jednu stranu vynikali obratností a vytrvalostí, na druhou nespotřebovali příliš paliva, a vydrželi dostatečně dlouho bez tankování nebo dobíjení. Takové stroje pak armáda chtěla nasazovat do nebezpečných situací místo lidí.

Unikátní řešeníJako první přišla na řadu v roce 1999 uhlíková nanovlákna, obrovské polymerní molekuly z čistého uhlíku, které vědce fascinují už několik let svými neuvěřitelnými elektrickými i mechanickými vlastnostmi.

Mimo jiné se o nich uvažuje jako o hlavním kandidátu na nosné lano pro vesmírný výtah. Pro svaly se hodily z důvodu značné nosnosti a schopnosti udržet silný elektrický náboj. Navíc na změnu napětí reaguje smrštěním.

Problém s dodávkou energie se vyřešil do té doby nevídaným unikátním způsobem. Vlákno bylo zakomponováno do palivového článku jako elektroda. Do komory s kyselinou sírovou byl vháněn plynný kyslík, který spolu s vodíkovými ionty z kyseliny „vyráběl“ vodu. Tento proces vyžaduje volné elektrony, které jsou „vysávány“ z uhlíkového nanovlákna. V důsledku ztráty záporných částic tak sval postupně získává kladný náboj, na což reaguje smrštěním. Aby se natáhl do původní délky, stačí pak sval propojit s opačnou elektrodou a nechat elektrony vrátit se zpět na jejich místo.

Tvarová paměť je lepší„Uhlíková nanovlákna tehdy prokázala, že lze vyvinou umělé svaly poháněné přímo chemickou energií,“ vzpomíná John Madden z Univerzity of British Columbia v kanadském Vancouveru. Až do té doby totiž byly svaly zcela odděleny od zdroje energie, nijak se do procesu jejího využití nezapojovaly.

„Zakomponováním vlákna přímo do palivového článku se umělé svaly o krok přiblížily své biologické předloze.“Nicméně tento materiál má jednu podstatnou nevýhodu. Zatímco bez problémů vyvine sílu stokrát větší než lidské svaly srovnatelné velikosti, nedokáže se zkrátit ani o celé procento své délky.

Pohyb v takto nepatrném rozsahu je pro imitaci funkce lidských končetin zcela nevhodný. Proto se další výzkum soustředil na úplně odlišnou látku, slitinu niklu a titania, tzv. nitinol. Ta se vyznačuje výraznou tvarovou pamětí, tzn.

že po deformaci a následné změně teploty se vrací zpět do svého původního tvaru. Technologové potáhli nitinolová vlákna platinovým katalyzátorem a pak je vystavili proudu metanolových par. Alkohol totiž při reakci se vzdušným kyslíkem uvolňuje teplo, které způsobí kontrakci svalového vlákna.

A jelikož si nitinol pamatuje svůj výchozí tvar, stačí jej přestat zahřívat, tedy zavřít přívod alkoholu, a umělý sval se vrátí do své původní podoby.

Pohon na krevní cukrNarozdíl od uhlíkových nanovláken se nitinol dokáže zkrátit až o pět procent své původní délky, což bylo pro vědce dostatečným důvodem k radosti. S takovým rozdílem se robotické končetiny mohou rozhýbat bez jakýchkoli problémů.

Aby se ale vědci příliš neradovali, jak už to u nových objevů zkrátka chodí, muselo jejich jásot nad úspěchem opět něco pokazit. Vlákno totiž vyznává jednoduchou filozofii „buď všechno, nebo nic“. Nelze tedy nijak určit, jakou silou ani jakou rychlostí se má sval smršťovat.

Další nevýhodou je, že systém ke svému fungování potřebuje cirkulační okruh, který by zajišťoval přívod metanolu, jenž je energeticky značně nevýhodný. Řešení však může být do budoucna příslibem hlavně pro umělé náhrady poškozených vnitřních orgánů.

Jeho autoři totiž chtějí nahradit platinový katalyzátor enzymy, které by umožňovaly reakce s cukry namísto s alkoholem. Pokud se jim podobný kousek podaří, otevřeli by si například cestu k umělému srdci, jemuž by energii v podobě cukrů rozvážela, úplně stejně jako „živým“ orgánům, obyčejná krev.

„V současné době to zní jako sen,“ nehýří optimismem jeden z členů texaského autorského týmu, Ray Baughman. „Nicméně je to sen vcelku uskutečnitelný.“

S lidmi už raději ne!O tom, že by uhlíková nanovlákna nebo svaly z nitinolu dokázaly v dohledné době vyhrát klání v páce s lidským soupeřem, si však vědci mohou zatím nechat jenom zdát. Doposud ještě nikdo pořádně neřeší jejich přesné ovládání, trvanlivost či snad dokonce kompatibilitu s živou tkání.

„Zkoumáním vlastností materiálů už se zabývalo hodně odborníků dlouhá léta a přineslo to kýžené ovoce. Ale s dalším řešením jejich využití si zatím hlavu nikdo příliš nelámal,“ podotýká John Madden.Letos se tedy namísto klání se živými soupeři, které mělo minulý rok hlavně vzbudit zájem veřejnosti, uskuteční soutěž mezi jednotlivými umělými pažemi navzájem.

Organizátoři tak chtějí výrobce motivovat k většímu „tahu“ směrem ke konečnému řešení s využitím již testovaných materiálů. Do hry ale vstupuje další důvod pro změnu pravidel, umělé svaly se tak ušetří potupné porážky.

„O mnoha materiálech víme, co všechno dokáží, ale zatím jsem se ani zdaleka nedokázali přiblížit hranici jejich využitelnosti,“ dodává Bar-Cohen. „Když budeme stále dokola jen prohrávat, ničemu to nepomůže.“

Kandidáti na svalovce planetyUmělé svaly se vyvíjejí z několika odlišných typů materiálů, které by měly splňovat kritéria kombinace dostatečné síly, rychlosti a pružnosti.Vodivé polymery – při aplikaci elektrického proudu se do vlákna „nasají“ ionty z okolního elektrolytu, čímž způsobí změnu jeho délky.

Takové materiály vynikají i při nízkém napětí značnou silou, jsou však pomalejší než organické a dokáží se zkracovat jen nepatrně.Dielektrické elastomery – gumové polymery (například silikon), naskládané mezi tenké vrstvy vodivých látek.

Ty se při změně napětí zmáčknou k sobě a vytlačí polymer ven. Fungují tedy podobně jako organická svalová vlákna. Jsou sice velmi rychlé a dokáží až několikanásobně prodloužit svou původní velikost, jsou však velmi náročné na energii.

Kompozitní polymery – mezi dvěma kovovými vrstvami je umístěn polymer. Přivedením elektrického proudu se ionty z polymeru přestěhují k jedné straně a materiál tím ohnou. Tyto svaly dokáží pracovat za velmi nízkého napětí, nicméně na druhou stranu jsou slabší než lidské.

Autor: Petra Soukupová
Rubriky:  Technologie
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Americké námořnictvo dostane nová chytrá torpéda

Americké námořnictvo dostane nová...

Torpéda mají své místo i v armádě 21. století. Pokud jsou tedy...
Experimenty na mezinárodní vesmírné stanici s pomocí Česka

Experimenty na mezinárodní...

Létání do vesmíru i pobyt v něm se už brzy stane pro astronauty...
Siemens představil ultra výkonnou dobíjecí stanici

Siemens představil ultra výkonnou...

Společnost Siemens Smart Infrastructure představila novou ultra výkonnou dobíjecí...
Úspěch českého SPACE týmu společnosti Atos

Úspěch českého SPACE týmu...

Český SPACE tým společnosti Atos se bude podílet na vývoji testovacího zařízení...
Budoucnost Cadillacu: Bude se létat a jezdit bez řidiče

Budoucnost Cadillacu: Bude se...

„Obyčejnému“ luxusu zvoní umíráček. Americká automobilka...
Rok 2021 a připojení 15 nových jaderných bloků

Rok 2021 a připojení 15 nových...

Celkem 15 nových jaderných bloků o souhrnném instalovaném výkonu přes...
Telemedicína je dobrý sluha, ale špatný pán

Telemedicína je dobrý sluha, ale...

Pandemie koronaviru prohnala české zdravotnictví „urychlovačem“ a definitivně...
Češi a jejich kladivo na fake news

Češi a jejich kladivo na fake news

„Známá byla na testech, nevydržela čekat ve frontě, a šla domů, přesto dostala...
Jak se u nás testují Chytré silnice?

Jak se u nás testují Chytré...

O překážce na silnici víte dřív, než ji uvidíte. Krátce před úsekem,...
Projekt Crocodile: O bouračce v Česku ví i Bulhar

Projekt Crocodile: O bouračce v...

Ve světě vládne síla informace. A vůbec nejlepší je taková, která je srozumitelná. Staré...

Nenechte si ujít další zajímavé články

Místa na Zemi, která ale vypadají jako z jiné planety

Místa na Zemi, která ale vypadají...

Na světě existují místa, která v mnohých z nás vzbuzují...
Fatální rozhodnutí: Břetislav I. Přemyslovcům pěkně zavařil

Fatální rozhodnutí: Břetislav I....

Český kníže Břetislav I, které mu historie dá přízvisko český Achilles, se...
Tuna sem, tuna tam: Jak se váží dinosaurus?

Tuna sem, tuna tam: Jak se váží...

Stačí najít pár kostí a experti jsou schopní odhadnout, kolik prehistoričtí...
Mínus 90 stupňů! Aneb kde vám bude největší zima?

Mínus 90 stupňů! Aneb kde vám bude...

Kanada, Grónsko nebo snad Antarktida? Kde byste...
Proč musíme spát?

Proč musíme spát?

Spánek je činnost, kterou trávíme průměrně 25 let z našeho...
Současníci považovali cestopis Marka Pola za milion lží

Současníci považovali cestopis...

„Všechno jsou to lži. A ten Polo, to je lhář ze všech největší,“ rozčílí se vážený...
Anně Lucemburské vyšly zásnuby až na třetí pokus

Anně Lucemburské vyšly zásnuby až...

Anna Lucemburská, dcera římského císaře a českého krále Karla IV.  a jeho čtvrté...
Mají v Číně podivné chutě?

Mají v Číně podivné chutě?

Každá kultura má své pokrmy, ke kterým potřebujete poměrně dost...
České princezně se stal osudným druhý porod

České princezně se stal osudným...

Český král Přemysl Otakar I.  je obratným diplomatem. V rámci Římské říše, kde...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.