Pozor, padá družice!

Už 2. září 2006 bude evropská sonda SMART-1 navedena proti měsíčnímu povrchu. Země se v té chvíli naježí teleskopy a dalšími přístroji, které se pokusí zachytit, zdali při dopadu nebude možné potvrdit stopy vody. Nebude to přitom poprvé (a pravděpodobně ani naposledy), co se nějaká kosmická sonda vydá na takovou sebevražednou misi.Už 2. září 2006 bude evropská sonda SMART-1 navedena proti měsíčnímu povrchu. Země se v té chvíli naježí teleskopy a dalšími přístroji, které se pokusí zachytit, zdali při dopadu nebude možné potvrdit stopy vody. Nebude to přitom poprvé (a pravděpodobně ani naposledy), co se nějaká kosmická sonda vydá na takovou sebevražednou misi.

První sondy-kamikadze
Využít zániku kosmické sondy k získání cenných vědeckých dat (mnohdy jinak nezískatelných) není myšlenka nikterak nová. Prvním automatickým „sebevrahem“ se měla stát sovětská sonda Luna, která ovšem v lednu 1959 svůj úkol na Měsíci nesplnila. 
To se povedlo až sondě Luna-2 v září 1959, kdy tak poprvé došlo k zásahu kosmického tělesa objektem vytvořeným lidskou rukou. Pochopitelně, že automat neměl nejmenší šanci střet s Měsícem v rychlostí přes 3 km/s (10 800 km/h) přežít, to ani nebylo jeho úkolem. 
Amerika se nechtěla nechat zahanbit, a tak rovněž nasadila k průzkumu Měsíce sondy s krátkou životností – jmenovaly se Ranger, bylo jich devět a létaly v letech 1961 až 1965. Úspěšné ale byly jen tři poslední. V průběhu pádu pořizovaly tisíce fotografií, které vysílaly na Zemi. Nejlepší snímky, odeslané zlomek sekundy před nemilosrdným rozdrcením sondy o měsíční povrch, ukazovaly až 25centimetrové podrobnosti!

Nezdařený pokus
Na nějaký čas se pak „pádové“ automaty odmlčely, ale v posledních deseti letech zažily renesanci. Např. součástí ruské sondy Mars-96 (překřtěná na Mars-8) byla i čtveřice výsadkových modulů, z toho byly dva penetrátory, moduly mající za úkol přežít po prakticky nebržděném pádu z oběžné dráhy tvrdý střet s povrchem. Jsou to vlastně velmi odolné projektily, vystavené při dopadu přetížení několik tisíc G (váží v tu chvíli několiktisíckrát více než normálně). Pro srovnání: posádky startujících raketoplánů jsou vystaveny přetížení 3 G, astronauti vracející se od Měsíce 11 G.
Penetrátory ruské sondy měly tvar válce (délka 2,1 m, průměr 0,17 m) o hmotnosti 125 kilogramů, který má na jedné straně tupou špici, na straně druhé se pak rozšiřuje do jakéhosi límce. Měly být svrženy z oběžné dráhy, přečkat průlet atmosférou a dopadnout na povrch. Přední část by se podle charakteru horniny a úhlu dopadu zaryla do hloubky čtyř až šesti metrů, zadní (límcová) by zůstala na povrchu.
Leč sonda Mars-96 nikdy neopustila oběžnou dráhu Země, kde zůstala uvězněna po závadě na čtvrtém stupni nosné rakety…

Sonda nepřežila, moduly ano!
V roce 1999 se pokusila o měkké přistání na povrchu planety Mars americká sonda Polar Lander, ale manévr byl neúspěšný a automat byl nejspíš zničen.  Přesto „svezl“ k Marsu dvojici výsadkových modulů Scott a Amundsen. Ty byly těsně před příletem uvolněny a vydaly se tak na samostatnou cestu k povrchu, do oblasti jižního pólu Marsu.
Cílem bylo pokusit se proniknout pod povrch planety, hledat tu stopy vody a stanovit zdejší fyzikální vlastnosti. Každý modul vážil jen 3,572 kg! To je hodnota obdivuhodná, když uvážíme, že je v ní počítáno i s tepelným štítem (1,165 kg) z keramického materiálu, který se při tvrdém (nebržděném) dopadu na povrch roztříští.
Každý modul se skládal ze dvou částí, penetrační sondy, pronikající 0,3 až 1 metr pod povrch, a límce, který měl zůstat na povrch planety. Límec o průměr 136 mm byl vysoký 105,3 mm. Obsahoval baterie, tlakový senzor, akcelerometr, komunikační vybavení, všesměrovou anténu o výšce 127 mm a sluneční detektor.

Moduly se nikdy neozvaly
Penetrační sonda měla tvar válce (délka 105,6 mm, průměr 35 mm, hmotnost 0,67 kg) vepředu zakulaceného, aby jako střela snáze pronikl pod povrch.  V přídi nesl teplotní senzor, nad nímž se nacházel blok s vrtáčkem, mikromotorem a řídícím počítačovým čipem. A aby toho nebylo málo, byla zde komora na vzorky (0,1 cm3) a zařízení pro jejich ohřev na teplotu až deset stupňů Celsia. Nechyběl ani diodový laser, který měl sledovat vodu uvolňovanou postupně při zahřívání.
Před konstruktéry nezbývá než hluboce smeknout, když si uvědomíme rozměry a hmotnost sond, nehledě na to, že celé zařízení bylo připraveno na přežití tvrdého dopadu rychlostí 100 až 200 m/s (360 – 720 km/h). Narozdíl od většiny ostatních těles zmiňovaných v tomto článku nebyly tedy moduly sebezničující, ale měly za úkol pád přežít.
Bohužel, stejně jako celá sonda Mars Polar Lander, ani moduly Scott a Amundsen se nikdy neozvaly…

„Štěnice“ na Jupiteru
Jednou z nejúspěšnějších meziplanetárních sond v historii kosmonautiky se stala americká stanice Galileo. Vypuštěna byla v říjnu 1989, aby po mnohaleté pouti vesmírem dorazila v prosinci 1995 k největší planetě našeho slunečního systému, k Jupiteru. Na jeho oběžné dráze se usadila na dobu téměř osmi let a předala nám tisíce fotografií a obrovské množství dalších cenných dat.
Už přílet k Jupiteru přitom znamenal použití „sebevražedného“ modulu. Zatímco mateřská sonda mířila na oběžnou dráhu, modul o průměru 1,3 metru a hmotnosti bagrové lžíce (339 kg) se vydal vstříc jisté záhubě. Jupiter totiž nemá pevný povrch, ale směrem k jádru roste tlak a teplota plynu, z nichž se skládá. Modul byl ze sondy Galileo uvolněný už v červenci 1995, zhruba 150 dní před příletem k cíli. To proto, aby hlavní sonda měla dostatek času uhnout.
Následně modul vstoupil rychlostí 47,8 kilometru za sekundu (172 080 km/h) do hustých vrstev atmosféry Jupitera a během necelých dvou minut snížil svoji rychlost na podzvukovou. Poté rozevřel padák o průměru 2,5 metru a odhodil nyní již nepotřebný tepelný štít. Celkem 58 minut dokázala šestice přístrojů zkoumat atmosféru Jupitera. Krátce přes ztrátou spojení začala dramaticky narůstat teplota na její palubě, takže ji nejspíše zničilo přehřátí. O několik hodin později byla zničena i fyzicky, neboť šílené tlaky panující v atmosféře planety ji rozdrtily a zbytky roztavily.

Zánik Galilea
Také vlastní sonda se nakonec vydala zkáze vstříc hlubinám atmosféry Jupitera. Kalendář ukazoval 21. září 2003, když byla mise definitivně ukončena. NASA jednak usoudila, že ze stárnoucí sondy a jejího přístrojového vybavení už není možné získat další data a jednak chtěla zabránit tomu, aby sonda dopadla na měsíc Europa. Ten je totiž považovaný za možnou „oázu života“ ve sluneční soustavě a NASA nechtěla riskovat její „znečištění“ případnými pozemskými bakteriemi a mikroorganismy na Galileu.
Bohužel, oběžná dráha sondy a postavení Země vůči Jupiteru neumožnily sledovat bezprostřední zánik Galilea, neboť ten zmizel za obzorem (tedy z přímé viditelnosti a „slyšitelnosti“ ze Země) ve výšce necelých 10 000 kilometrů nad horními vrstvami atmosféry.

Zdařilé střílení do komety
V lednu 2005 odstartovala a o půl roku později zasáhla kometu Tempel-1 americká sonda Deep Impact (Hluboký dopad). Přesněji, zásah provedla její dopadová část (Impactor), průletová část celou událost monitorovala. Byla to dosud nejzajímavější a nejkomplexnější mise vyslání automatu proti  kosmickému tělesu – podrobněji jsme se expedici věnovali v časopise 21. STOLETÍ 5/2005 a 5/2006.
Povzbuzen úspěchem automatu Deep Impact se tým z University of Maryland rozhodl předložit další podobný projekt. Jmenuje se DeepR, přičemž rozhodnutí o jeho financování má NASA oznámit v roce 2007 (přitom již letos v září bude zveřejněno, zdali některý z projektů postupuje ve výběrovém řízení do druhého kola).

Dojde k setkání u komety? 
DeepR (jako Rosetta) bude v podstatě identickým dvojčetem úspěšné mise Deep Impact. Vtip této sondy ovšem spočívá v tom, že zamíří ke kometě 67P/Čurjumov-Gerasimenko. Podstatné přitom není, co je to za kometu, ale fakt, že k ní již momentálně míří evropská sonda Rosetta. Ta by měla kolem komety nejprve dvakrát proletět (květen 2011 a květen 2014) a posléze zakotvit v její blízkosti (srpen 2014). Kometa má být dlouhodobě studována – Evropská kosmická agentura (ESA) doufá, že nejméně půldruhého roku.
To ale ještě není všechno! V listopadu 2014 pak vysadí Rosetta na kometě přistávací modul Philae. Pokud by tedy sonda DeepR přiletěla ke kometě 67P/Čurjumov-Gerasimenko v době, kdy u ní bude kroužit stanice Rosetta a na jejím povrchu pracovat modul Philae, získali by vědci z několika sond souběžně ohromné množství vědeckých dat. Američtí vědci plánují, že pokud by mise byla schválena, projektil sondy by ji zasáhl 29. července 2015.

Vědecká data nad plán
V nejbližší době má tedy dopadem na povrch Měsíce svoji bohatou kariéru zakončit evropská stanice SMART-1 (Small Missions for Advanced Research in Technology). Vypuštěna byla v srpnu 2003, přičemž nejde o čistě vědeckou misi, ale o technologický experiment. Cílem letu je prověřit fungování nových materiálů, techniky a technologií, které by mohly v budoucnu najít uplatnění na dalších meziplanetárních sondách, ale které je drahé a nebezpečné na „ostrých“ misích testovat. Veškerá vědecká data jsou tak získaná jaksi „nad plán“.
Původní mise sondy u Měsíce skončila již v roce 2005, ESA se ale rozhodla ji ještě prodloužit do srpna 2006. Poté bude 300 kilogramů těžké těleso nasměrováno proti lunárnímu povrchu, který zasáhne rychlostí přes dva kilometry za sekundu (7 200 km/h). Počítačové simulace v době uzávěrky tohoto vydání časopisu 21. STOLETÍ ukazovaly, že k dopadu SMART-1 dojde na souřadnicích 44,54 stupně západní délky a 36,22 stupně jižní šířky v oblasti Lacus Excellentiae (Jezero vyniknutí), deset stupňů jižně od Mare Humorum (Moře vláhy). Je ovšem pravděpodobné, že později bude místo dopadu ještě více upřesněno nebo v závislosti na korekcích oběžné dráhy sondy změněno.

Voda je v kráterech
Není to ale poprvé v posledních letech, co byla sonda původně určená k dlouhodobému mapování Měsíce nasměrována k jeho povrchu. Podobný osud potkal i americkou stanici Lunar Prospector, která se roztříštila 31. července 1999. Ta byla vypuštěna v lednu 1998 a po několikadenním přeletu byla navedena na kruhovou dráhu ve výšce 110 kilometrů nad lunárním povrchem, odkud pomocí pětice přístrojů plnila svůj hlavní úkol, kdy pátrala po stopách vody na Měsíci.
Cíl splnila, neboť v březnu 1998 vědci oznámili, že nalezli stopy vody (cca šest miliard tun) v kráterech především v oblasti jižního pólu, do nichž nikdy nezasvítí Slunce (voda se v pevném stavu nachází pod povrchem). Některé ironické komentáře poznamenávaly, že sonda za necelých 100 mil. dolarů tak dokázala to, co nedokázal projekt Apollo s rozpočtem desítek miliard dolarů…
Mise Lunar Prospector měla skončit v polovině roku 1999 po vypotřebování všech pohonných látek. Nicméně pak se objevil zajímavý nápad, nasměrovat sondu k řízenému pádu na povrch Měsíce. Dopad by bylo možné pozorovat ze Země, přičemž při troše štěstí se podaří nezávisle potvrdit podpovrchové zásoby voda.

Bude SMART-1 úspěšnější?
Poslední červencový den roku 1999 se Země naježila teleskopy, spektrometry a dalšími přístroji, svoji pozornost k Měsíci obrátil i teleskop Hubble a další astronomické družice. Lunar Prospector do stanovené oblasti (kráter Mawson) sice dopadl, nicméně žádné stopy po vodě se nepodařilo objevit.
To ale nikoho zase tak moc nepřekvapilo, protože množství uvolněné horniny (potažmo vody v ní obsažené) bylo na samé hranici (a nejspíše i pod ní) našich detekčních možností.
Už zanedlouho však uvidíme, zdali SMART-1 bude úspěšnější…

Střelnice na Měsíci
Také v programu pilotovaného průzkumu Měsíce Apollo bylo využito „sebevražedného“ dopadu umělých těles. Šlo o obratnou snahu využít maximum z opravdu každé komponenty systému. Počínaje misí Apollo-13 (pokus o třetí lunární přistání) tak byly vypotřebované třetí stupně obřích raket Saturn-5 směrovány proti měsíčnímu povrchu. Do té doby kolem Měsíce jen pasivně prolétaly.
Nicméně díky Apollu-11 a –12 (a později i dalším výpravám) se na jeho povrch dostaly seismografické přístroje a dopady rozměrných stupňů (hmotnost přes 11 tun) vlastně „simulovaly“ dopady meteoritů a umožňovaly tak studovat vnitřní strukturu Měsíce.
Později byly s podobným záměrem vůči povrchu odesílány, po splnění úkolu (dopravě posádky z povrchu k čekající mateřské lodi na oběžné dráze), také lunární moduly.

Jak se dostat pod povrch Europy?
Americký vědec Karl Hibbitts z Laboratoře aplikované fyziky při John Hopkins University v Baltimoru pracuje na návrhu hyperrychlostního projektilu, který by měl být jednoho dne vysazen z některé příští meziplanetární sondy vůči jupiterovu měsíci Europa. Projektil by měl povrch měsíce zasáhnout rychlostí 13 kilometrů za sekundu (46 800 km/h), přičemž při vlastní hmotnosti 100 kilogramů má při nárazu uvolnit zhruba miliónkrát více hmoty.
Vědci by totiž nesmírně rádi nahlédli pod ledovou slupku Europy, která je na různých místech tlustá 20 až 100 kilometrů. Malý projektil to pochopitelně nezvládne, k tomuto úkolu jsou zvažovány automaty s jaderným generátorem, které by se postupně „protavily“ ledovou krustou, ale může nám otevřít pohled do hloubky desítek metrů, na hmotu, která není zasažena silnou jupiterovou radiací. I zde bychom totiž mohli nalézt odpovědi na některé otázky týkající se možnosti existence života na Europě…

Japonci proti Měsíci
Už na rok 1995 chystalo Japonsko start sondy Lunar-A, nicméně dosud nebyla vypuštěna. Pokud misi kvůli neustálým technickým a rozpočtovým problémům nezruší, uskuteční se až v roce 2010! Nicméně pokud se podaří misi realizovat, bude její součástí dvojice penetrátorů, které mají být postupně vystřeleny k měsíčnímu povrchu.
Jejich konstrukce umožní při dopadu rychlostí 250 až 300 metrů za sekundu (900 – 1080 km/h) přežít přetížení až několik desítek tisíc G, takže se zaboří do povrchu podobně jako torpéda a budou odtud vysílat cenné vědecké informace. Pracovat budou v hloubce jeden až tři metry. Jeden modul má být vysazen na přivrácené, druhý na odvrácené straně Měsíce – bude to první lidská výprava na tuto část naší přirozené družice.
Každý penetrátor je dlouhý 90 centimetrů a má průměr 14 cm. Co se přístrojového vybavení týká, nesou penetrátory seismometr, teplotní sondu, sklonoměr a akcelerometr. Ponesou i paměť s kapacitou patnáct dní záznamu, radiový vysílač s anténou a baterii. Ta by měla vystačit na jeden rok provozu.

Další zásah pro Měsíc
Předtím, než se na Měsíci opět projdou američtí astronauti, má být náš přirozený souputník zkoumán celou flotilou kosmických sond. První z nich bude Lunar Reconnaissance Orbiter v říjnu 2008, přičemž jeho nosná raketa bude mít zhruba tisícikilogramovou rezervu. Proto se NASA rozhodla vyhlásit „bleskovou“ soutěž na smysluplné využití této rezervy a vítězem se stal projekt LCROSS (Lunar Crater Observation and Sensing Satellite).
V zásadě nejde o nic jiného než o to, že horní stupeň nosné rakety bude doplněn o závaží odpovídající hmotnosti a bude naveden proti jižní lunární oblasti. Po dopadu má vzniknout kráter, z nějž bude uvolněno přes 1000 tun horniny, která bude monitorována nejen ze Země, ale i z malé družice LCROSS.

Rubriky:  Vesmír
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

ALMA nalezla trojici vznikajících planet u nově zrozené hvězdy

ALMA nalezla trojici vznikajících...

Dva nezávislé vědecké týmy využívající radioteleskop ALMA získaly s jeho...
Kdo pobyl nejdéle v kosmu?

Kdo pobyl nejdéle v kosmu?

Minulý týden absolvovala dvojice amerických astronautů Andrew Feustel...
Indickým vědcům se podařilo najít novou planetu

Indickým vědcům se podařilo...

Velmi zajímavého objevu dosáhli indičtí odborníci. Těm se totiž...
Obsah metanu na Marsu se mění podle ročních období

Obsah metanu na Marsu se mění podle...

Rover Curiosity má napilno a na Zemi posílá jednu zajímavější zprávu...
Astronomové nalezli důkazy vzniku hvězd již 250 milionů let po velkém třesku

Astronomové nalezli důkazy vzniku...

Astronomové využili pozorování získaná pomocí radioteleskopu ALMA a...
Astronomové objevili na Plutu duny z krystalů zmrzlého metanu

Astronomové objevili na Plutu duny...

Během zkoumání snímků planety Pluto odborníci objevili duny, které se...
Curiosity objevil na Marsu organické sloučeniny

Curiosity objevil na Marsu...

Rover Curiosity, který na Marsu pracuje od roku 2012, narazil při svém...
Muskův let na Měsíc? Tento rok nikoliv

Muskův let na Měsíc? Tento rok...

V únoru loňského roku zakladatel společnosti SpaceX Elon Musk s velkou...
Nebezpečí pro budoucí měsíční mise: prach

Nebezpečí pro budoucí měsíční...

Otisk boty Neila Armstronga v měsíčním prachu je jedním ze symbolů...
Výstava Cosmos discovery láká fanoušky vesmíru do Brna

Výstava Cosmos discovery láká...

V areálu brněnského Výstaviště je již nějakou dobu otevřena výstava...

Nenechte si ujít další zajímavé články

Octová dieta: Bizarním prostředkem ke zhubnutí se tráví i lord Byron

Octová dieta: Bizarním prostředkem...

Lžičce jablečného octu před každým jídlem údajně vděčí za své postavy i...
Jaké bude marťanské menu?

Jaké bude marťanské menu?

O pilotovaném letu k Marsu se v odborných i laických kruzích hovoří poměrně...
Tužka: Svět s ní píše už 460 let!

Tužka: Svět s ní píše už 460 let!

Tenký váleček grafitu zasazený do kousku dřeva. Snadno se s ním píše, napsané...
Frank: Město, na které dopadne 90 milionů tun skály!

Frank: Město, na které dopadne 90...

Když je něco pevné jako skála, tak to ještě nemusí být pevné. A když...
VIDEO: Děti tak nemocné, že musejí žít ve speciální bublině

VIDEO: Děti tak nemocné, že musejí...

Vzácná porucha imunity má za následek to, že dítě musí žít...
Proč si čeští diplomati dovolil kritizovat samotného papeže?

Proč si čeští diplomati dovolil...

Nikdo dodnes přesně neví, kdo panoš Jaroslav vlastně byl! Například historik...
Průzkum: Manželství zdraví neprospívá!

Průzkum: Manželství zdraví...

Dlouhá léta se čtenáři společenských rubrik mohli seznamovat s výzkumy, že...
Krok ke stálé základně na Měsíci: Cihly z měsíčního prachu

Krok ke stálé základně na Měsíci:...

Evropští výzkumníci vytvořili ze simulovaného měsíčního regolitu pomocí...
Městečko Pyramiden: Opuštěný skanzen socialismu

Městečko Pyramiden: Opuštěný...

Na podzim roku 1998 město Pyramiden na Špicberkách vypadalo, jako by...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.