Přesvědčivý důkaz o tom přinesl mezinárodní výzkumný tým, jehož součástí byl i astrofyzik Michal Zajaček z Přírodovědecké fakulty Masarykovy univerzity. Výsledky studie, v níž vědci zpracovali data, získaná největšími radioteleskopy na světě, byly nedávno publikovány v prestižním odborném časopise The Astrophysical Journal. .
Tým pod vedením astronomky Silke Britzen z německého Institutu Maxe Plancka pro radioastronomii zkoumal tzv. blazary, aktivní jádra galaxie, jejichž rychlé výtrysky horké plazmy, tzv. jety, směřují přímo k Zemi.
Vědci přinesli důkazy, že za pozorovanou proměnlivostí blazarů je zodpovědná precese těchto jetů, tedy rotační pohyb výtrysků plazmy. Specifická rotace je způsobena buď přítomností druhé masivní černé díry v blízkosti té primární, nebo pokřiveným akrečním diskem kolem jediné černé díry.
Jako roztočená káča
Supermasivní černé díry se obvykle nacházejí v centrech galaxií. Předpokládá se, že akrece hmoty na centrální černou díru vytváří obrovské množství energie, které může zastínit celou galaxii – tyto centrální oblasti, označované jako aktivní galaktická jádra (AGN), jsou nejsvítivějšími trvalými zdroji ve vesmíru.
„Prostorovou kinematiku akrečních disků a jetů lze přirovnat k jednoduchým gyroskopům, které si můžeme představit jako roztočenou káču. Pokud na akreční disk působí vnější kroutící moment, například prostřednictvím obíhající sekundární černé díry, dojde k jeho precesi a nutaci – tedy změnám orientace osy a jejímu kolísání.
A spolu s ním tento pohyb vykonává i jet, podobně jako u osy rotace Země, kterou ovlivňuje Měsíc a Slunce,“ vysvětluje Michal Zajaček z Ústavu teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy univerzity.
Důkaz podává gravitace
Jedním z nejdůležitějších výstupů této studie je, že zakřivení jetů pravděpodobně vypovídá o existenci binárních černých děr v centru aktivních galaxií. Jet je nucen stáčet se působením gravitačního vlivu jedné černé díry na druhou, která emituje výrony horké plazmy.
Kromě toho se týmu podařilo odhalit stopy nutačního pohybu s menší amplitudou v rádiových světelných křivkách, i v kinematice komponent jetu – efekt druhého řádu a další důkaz precese.
Pozorování supermasivních černých děr dosahuje nejvyššího možného rozlišení propojením radioteleskopů na velmi velké vzdálenosti pomocí rádiové interferometrie. Jedná se o stejnou techniku, která umožnila v dubnu 2019 v rámci projektu Event Horizon Telescope poprvé zobrazit stín černé díry a pozorovat černou díru o hmotnosti 6,5 miliardy Sluncí v galaxii M87.