Domů     Objevy
Tým fyziků ověřil existenci jevu, který pomůže při výrobě čipů
Jan Zelenka 9.5.2024
V altermagnetech na sousedních magnetických atomech alternují nejen směry spinové polarizace (znázorněné fialovou a modrou barvou), ale také samotné tvary atomu (znázorněné nakloněním čínkovitě tvarovaných elektronových hustot do dvou různých směrů). Modrý paprsek znázorňuje fotoemisni experiment na synchrotronu, který byl použití k prokázání altermagnetismu. | foto: Libor Šmejkal, Anna Birk Hellenes

Vezmete altermagnet, dáte ho pod rentgen, měníte polarizační filtr a pozorujete, jak materiál pohlcuje světlo. Zní to skoro jako pokus z běžné hodiny fyziky, jde však o průlomový experiment, jehož výsledkem je pozoruhodný objev fyziků z Masarykovy univerzity, Akademie věd ČR (AV ČR), Metropolitní univerzity v Ósace a University of Nottingham.

Před půl rokem mezinárodní tým vědců zbořil v článku publikovaném v časopise Nature tradiční představu o dělení magnetismu na dvě větve – několik tisíciletí známou feromagnetickou a přibližně před 100 lety objevenou antiferomagnetickou.  Výzkumníkům se nyní podařilo experimentálně prokázat třetí větev – altermagnetickou – teoreticky předpovězenou vědci z Prahy a Mohuče před několika lety.

Pojmosloví

Pod pojmem magnet si obvykle představíme feromagnet, který má silné magnetické pole, díky němuž udrží nákupní seznam na lednici nebo umožní funkci elektromotoru v elektrickém automobilu. Magnetické pole feromagnetu vzniká, když je magnetické pole milionů jeho atomů sladěno ve stejném směru.

Toto magnetické pole lze také využít k modulaci elektrického proudu v součástkách IT. Feromagnetické pole zároveň ale představuje vážné omezení prostorové a časové škálovatelnosti součástek.

Významná pozornost výzkumu posledních let se tak upnula k druhé, antiferomagnetické větvi. Antiferomagnety jsou méně známé, ale v přírodě mnohem běžnější materiály, ve kterých se směry atomových magnetických polí na sousedních atomech střídají podobně jako bílá a černá barva na šachovnici.

Antiferomagnety tedy jako celek nevytvářejí nežádoucí magnetická pole, ale bohužel jsou natolik antimagnetické, že zatím nenašly uplatnění v IT.

Altermagnety kombinují „neslučitelné“ přednosti

A poslední altermagnety si můžeme představit jako magnetické uspořádání, kde se střídají nejen směry magnetických polí na sousedních atomech, ale také se střídá prostorová orientace atomů v krystalu. Nicméně vnitřní magnetická pole modulují elektrický proud obdobně jako u feromagnetů.

Tato kombinace vlastností je potenciálně velmi atraktivní právě pro aplikace v budoucí ultraškálovatelné nanoelektronice.

Nedávno předpovězené altermagnety kombinují přednosti feromagnetů a antiferomagnetů, které byly považovány za principiálně neslučitelné, a navíc mají také další jedinečné přednosti, jež se v ostatních větvích nevyskytují,” řekl Tomáš Jungwirth z Fyzikálního ústavu Akademie věd ČR.

Vědci navíc identifikovali více než 200 materiálových kandidátů na altermagnetismus s vlastnostmi pokrývajícími izolanty, polovodiče, kovy, a dokonce supravodiče. Výzkumné skupiny mnohé z těchto materiálů v minulosti zkoumaly, ale jejich altermagnetická povaha jim zůstala ukryta.

Cirkulární dichroismus je rozdílná absorpce levotočivě a pravotočivě polarizovaného záření. Znázorněna je struktura MnTe s vyznačenými magnetickými momenty. Autorem ilustrace: FZÚ AV ČR.

Z Prahy do Brna

To, co popsali pražští vědci z Fyzikálního ústavu Akademie věd ČR, nyní ověřili jejich kolegové z Masarykovy univerzity, Akademie věd ČR (AV ČR), Metropolitní univerzity v Ósace a University of Nottingham.

Popsaný jev, který se nazývá magnetický cirkulární dichroismus, spočívá v tom, že pohlcování světla se liší podle polarizace použitého světla. Běžně se tento jev používá ke studiu obvyklého magnetismu (feromagnetů).

Jedinečnost nového objevu spočívá v tom, že nyní byl dichroismus poprvé pozorován u materiálu, jenž je navenek nemagnetický a jehož všechny magnetické momenty jsou rovnoběžné, konkrétně u altermagnetu tvořeného tenkou vrstvou teluridu manganu (MnTe).

O svém výzkumu a pozorování informoval mezinárodní tým vědců v časopise Physical Review Letters.

Zatímco u feromagnetu směřují magnetické momenty jednotlivých atomů stejným směrem, u altermagnetu se jejich orientace střídá, takže se navenek materiál jeví jako nemagnetický,“ vysvětluje základní rozdíl Jan Kuneš z Ústavy fyziky kondenzovaných látek Přírodovědecké fakulty Masarykovy univerzity.

Netušené možnosti

Altermagnety jsou materiály, které podle vědců představují nadějnou platformou např. pro novu generaci paměťových zařízení a jejich průmyslovou výrobu, nejsou citlivé na rušivá magnetická pole, samy žádné rušivé pole nebudí.

„Mohly by mít velmi praktické využití např. při výrobě čipů, které by byly odolnější proti magnetickému poli a možnému znehodnocení,“ zamýšlí se profesor Kuneš. Tzv. spintronické nanosoučástky založené na altermagnetech by pak mohly přinést prvky s výrazně vyšší rychlostí procesů.

Že se u spintroniky nejedná o pouhé teorie, naznačuje již její využití např. u čtecích (snímacích) hlav některých elektronických zařízení nebo v pamětech typu MRAM.

Otisk prstu magnetického uspořádání

Experimentální pozorování dichroismu navázalo na teoretickou předpověď a kvantově mechanický výpočet závislosti na vlnové délce použitého rentgenového záření, který provedl Atsushi Hariki z Metropolitní univerzity v Ósace.

„Spektrální závislost tohoto jevu lze považovat za jakýsi otisk prstu magnetického uspořádání,“ hodnotí své vysoce přesné modely japonský teoretik. Aby mohli vědci experimentálně potvrdit své výpočty a teorie, připravili na Nottinghamské univerzitě tenké vrstvy MnTe a v ultravysokém vakuu je převezli téměř 200 kilometrů do britské národní laboratoře synchrotronového rentgenového zařízení Diamond Light Source poblíž Oxfordu.

Světová premiéra

Zařízení synchrotron si můžeme představit jako kruh s obvodem stovek metrů, ve kterém lze urychlovat elektrony na rychlost blízkou rychlosti světla. Tehdy vzniká intenzivní záření, např. rentgenové. Tomuto záření vystavili fyzici vrstvu teluridu manganu a postupně měnili vlnovou délku záření.

Následně měřili rozdíly v absorpci pravotočivě a levotočivě polarizovaného světla.

Když se signál ve spektrech vynořil z šumu pozadí, pozoruhodně dobře souhlasil s teoretickou předpovědí,“ popisuje výsledek experimentu britský fyzik Kevin Edmonds z Nottinghamské univerzity. „Experimenty provedené v synchrotronu nejenže potvrdily teoretickou předpověď, ale navíc představují světově první pozorování tohoto jevu,“ objasňuje význam objevu spoluautor teoretické části výzkumu, fyzik Jan Kuneš z Masarykovy univerzity.

Foto:

1.

V altermagnetech na sousedních magnetických atomech alternují nejen směry spinové polarizace (znázorněné fialovou a modrou barvou), ale také samotné tvary atomu (znázorněné nakloněním čínkovitě tvarovaných elektronových hustot do dvou různých směrů).

Modrý paprsek znázorňuje fotoemisni experiment na synchrotronu, který byl použití k prokázání altermagnetismu. | foto: Libor Šmejkal, Anna Birk Hellenes.

2.

Cirkulární dichroismus je rozdílná absorpce levotočivě a pravotočivě polarizovaného záření. Znázorněna je struktura MnTe s vyznačenými magnetickými momenty. Autorem ilustrace: FZÚ AV ČR.

Související články
Žádná novinka to vlastně není, určité druhy hmyzu se k léčení používaly už ve starověku a tato zkušenost se leckde uchovala dodnes v lidové tradici. Jenže medicína si musela pár století počkat na vývoj metod schopných potvrdit nebo vyvrátit tradované účinky. Výsledky jsou zajímavé…   Stalo se za I. světové války: S americkými jednotkami se v roce 1917 […]
Objevy Technika 2.7.2025
Školní jaderný reaktor VR-1 na Fakultě jaderné a fyzikálně inženýrské ČVUT v Praze, známý jako „Vrabec“, v prosinci oslaví 35 let od svého spuštění. A protože takové výročí si zaslouží něco speciálního, otevře fakulta 8. října 2025 reaktor pro širokou veřejnost! Běžně se do reaktorové haly jen tak někdo nedostane – slouží hlavně studentům a […]
Objevy Příroda 30.6.2025
Vypadají jako medúzy, ale jsou úplně něco jiného. Jsou nejstarším známým pokusem o vývoj živočichů na naší planetě. Slovo primitivní se na ně ale nějak nehodí. Mají tak podivuhodné schopnosti, že by jim mohli závidět nejen mnohem pokročilejší živočichové, ale i autoři sci-fi. Jsou to pouhé dva roky, kdy věda definitivně potvrdila, co jsou žebernatky […]
V lidském těle probíhá řada procesů, které zajišťují jeho správné fungování. Českým vědcům se podařilo zjistit, že rakovinné buňky umí jeden z těchto procesů zneužít ve svůj prospěch, což jim umožňuje snadněji se v těle šířit. Dobrou zprávou je, že by tento objev mohl přispět k vývoji nových postupů protirakovinné léčby. Pro fungování lidského těla […]
Objevy Vesmír 25.6.2025
Na observatoři vysoko v chilských Andách odstartoval desetiletý projekt, který promění naše vnímání vesmíru. Nový teleskop s největší digitální kamerou na světě zveřejnil první snímky a ukázal, co všechno nás čeká. Na vrcholu Cerro Pachón v Chile se 23. června 2025 otevřely dveře do nového věku astronomie. Dalekohled Vera C. Rubinové za 810 milionů dolarů, vybavený […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz
Provozovatel: RF HOBBY, s. r. o., Bohdalecká 6/1420, 101 00 Praha 10, IČO: 26155672, tel.: 420 281 090 611, e-mail: sekretariat@rf-hobby.cz