Domů     Objevy
Převrat v optice: Vědci umějí skladovat světlo!
21.stoleti 18.12.2009

Na první pohled by se mohlo zdát, že světlo je nepolapitelné. Podmínky v kvantovém světě jsou natolik složité, že světelné částice jednoduše nelze skladovat v bednách jako banány, byť se o to obyvatelé Kocourkova několikrát pokoušeli. Jenže němečtí vědci všechny dosavadní teorie postavili na hlavu. A Kocourkovští mohou začít jásat.
Na první pohled by se mohlo zdát, že světlo je nepolapitelné. Podmínky v kvantovém světě jsou natolik složité, že světelné částice jednoduše nelze skladovat v bednách jako banány, byť se o to obyvatelé Kocourkova několikrát pokoušeli. Jenže němečtí vědci všechny dosavadní teorie postavili na hlavu. A Kocourkovští mohou začít jásat.

Past na světlo sestrojil tým německých vědců z mohučské univerzity pod vedením profesora Arna Rauschenbeutela. Léčka, na kterou se foton, tedy světelná částice, chytí, je důmyslná, zároveň jednoduchá a není z ní úniku.

Jak chytit světlo?

Světlo má vlastnosti jak částic, tak vlnění. Proto jej nelze jednoduše chytit do nějaké krabice a tam jej schovat. Na polapení světla je tedy třeba nějaké speciální zařízení. Třeba mikrorezonátor, což je šikovná věcička, která v sobě na zlomek vteřiny skutečně dokáže světlo udržet. Mikrorezonátory, které sehrály podstatnou roli při vývoji cédéček a dévédéček, jsou vlastně miniaturní nádobky s vysoce odrazivými stěnami, tedy zrcadly. Světlo, jež se do takového prostoru dostane, se tak odráží a zůstává na chvilinku chyceno.

Aby se však světlo v takovém zařízení udrželo déle, je třeba překonat několik komplikací. V první řadě získat co nejčistší zrcadla, která by světlo nepohlcovala. A také sladit materiál světelné pasti s frekvencí, tedy barvou světelného toku. Daná velikost pastičky totiž udrží jen jednu konkrétní světelnou frekvenci.

Vlákno jako návnada i past

A právě tady do celého příběhu zasahují němečtí vědci. Jejich řešení není nijak složité a má podobu optického vlákna. Arno Rauschenbeutel nechal vlákno nahřát a poté jej roztáhl tak, že bylo tenké jako polovina lidského vlasu. Poté vzal laserový paprsek a zhruba ve středu vlákna jím vyvrtal šišatou dutinku.
Světelný paprsek, mířící k takovému vláknu, netuší, že se blíží konec jeho svobody. Vklouzne do něj a začne se pohybovat kolem jeho osy. Na konci vlákna si však světlo uvědomí fatální skutečnost – stejně jako Otesánek neproleze malým okénkem. Světlo, ať se snaží, jak se snaží, také nemůže ven. Rozměry konce vlákna jsou totiž menší než jeho vlnová délka. A tak je světlo uskladněno. Taková pastička nemá problém zachytit světlo jakékoliv vlnové délky, optické vlákno je pružné a stačí jej podle potřeby buď natáhnout, nebo smrštit. Praktické využití by tento objev mohl najít zejména ve světě výpočetní techniky. Díky možnosti zachytávat světlo by třeba mohla vzniknout paměťová média s gigantickou kapacitou.

Tajemství světla

Viditelné světlo je elektromagnetické záření o vlnové délce 400–750 nm. Vlnové délky světla leží mezi vlnovými délkami ultrafialového záření a infračerveného záření. Tři základní vlastnosti světla jsou svítivost (amplituda), barva (frekvence) a polarizace (úhel vlnění). Ne každý živočich má stejný rozsah vnímání elektromagnetického záření. Včely mají svůj rozsah posunutý směrem k ultrafialovému záření, naopak někteří plazi vnímají i infračervené záření. Světlo je skutečný sprinter, jeho rychlost ve vakuu dosahuje 299 792 458 metrů za sekundu. V praxi to znamená, že za jedinou vteřinu by světelná částice oběhla naši planetu sedmkrát.

Související články
Jen v Česku si míchu poraní až tři stovky lidí ročně. Následky narušení tohoto křehkého spletence nervových vláken jsou zpravidla nevratné. Anebo ne? Kristýna Kárová z Ústavu experimentální medicíny AV ČR se možnostmi regenerace axonů po míšním poranění intenzivně zabývá. Potřebuju podrbat na nose, vyhodnotí mozek a vyšle motorickou drahou míchy signál do svalů ruky, […]
Na dně moře u japonského pobřeží bylo objeveno gigantické naleziště klíčových prvků pro výrobu baterií do elektromobilů, ložisko niklu a kobaltu. První vrty u ostrova Minami-Torišima budou zahájeny příští rok. Využívání ložiska v průmyslovém měřítku má být zahájeno v roce 2026. Podle nadace The Nippon Foundation, která v posledních měsících zkoumala mořské dno u ostrova […]
Bezmála tři století víme, že blesk je elektrický výboj. Stále ale není jasné, jak přesně vzniká, a není možné jej předpovědět. Přispět k vyřešení bouřkové hádanky by mohl model elektrizace oblačnosti, na jehož vývoji pracuje Jana Popová z Ústavu fyziky atmosféry AV ČR. Většinou blesky vznikají v bouřkovém oblaku, který se nazývá cumulonimbus. Známe ho […]
V době spuštění obsadil 40. příčku mezi pětistovkou nejvýkonnějších superpočítačů světa. Teď český superpočítač Salomon definitivně opouští datový sál IT4Innovations národního superpočítačového centra, které je součástí VŠB – Technické univerzity Ostrava. Výzkumných projektů bylo za dobu provozu Salomonu v období 15. září 2015 až 13. prosince 2021 celkově 1 085, spotřebovaly celkem 1 024 milionů jádrohodin výpočetního času a […]
Ta zpráva mohla vyděsit tisíce lidí, kteří zamíří v létě na Jadran. Kvůli oteplování moře se u pobřeží Černé Hory, zejména v moři u pláží v okolí Budvy, objevili mnohoštětinatci známí jako ohniví červi. Prý jsou jedovatí. Prý pouhý dotyk může lidem způsobit zdravotní obtíže. Mnohoštětinatec Hermodice carunculata, přezdívaný jako ohnivý červ kvůli zbarvení, způsobil […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz