reklama
Domů     Objevy
Převrat v optice: Vědci umějí skladovat světlo!
21.stoleti
od 21.stoleti 18.12.2009

Na první pohled by se mohlo zdát, že světlo je nepolapitelné. Podmínky v kvantovém světě jsou natolik složité, že světelné částice jednoduše nelze skladovat v bednách jako banány, byť se o to obyvatelé Kocourkova několikrát pokoušeli. Jenže němečtí vědci všechny dosavadní teorie postavili na hlavu. A Kocourkovští mohou začít jásat.
Na první pohled by se mohlo zdát, že světlo je nepolapitelné. Podmínky v kvantovém světě jsou natolik složité, že světelné částice jednoduše nelze skladovat v bednách jako banány, byť se o to obyvatelé Kocourkova několikrát pokoušeli. Jenže němečtí vědci všechny dosavadní teorie postavili na hlavu. A Kocourkovští mohou začít jásat.

Past na světlo sestrojil tým německých vědců z mohučské univerzity pod vedením profesora Arna Rauschenbeutela. Léčka, na kterou se foton, tedy světelná částice, chytí, je důmyslná, zároveň jednoduchá a není z ní úniku.

Jak chytit světlo?

Světlo má vlastnosti jak částic, tak vlnění. Proto jej nelze jednoduše chytit do nějaké krabice a tam jej schovat. Na polapení světla je tedy třeba nějaké speciální zařízení. Třeba mikrorezonátor, což je šikovná věcička, která v sobě na zlomek vteřiny skutečně dokáže světlo udržet. Mikrorezonátory, které sehrály podstatnou roli při vývoji cédéček a dévédéček, jsou vlastně miniaturní nádobky s vysoce odrazivými stěnami, tedy zrcadly. Světlo, jež se do takového prostoru dostane, se tak odráží a zůstává na chvilinku chyceno.

Aby se však světlo v takovém zařízení udrželo déle, je třeba překonat několik komplikací. V první řadě získat co nejčistší zrcadla, která by světlo nepohlcovala. A také sladit materiál světelné pasti s frekvencí, tedy barvou světelného toku. Daná velikost pastičky totiž udrží jen jednu konkrétní světelnou frekvenci.

Vlákno jako návnada i past

A právě tady do celého příběhu zasahují němečtí vědci. Jejich řešení není nijak složité a má podobu optického vlákna. Arno Rauschenbeutel nechal vlákno nahřát a poté jej roztáhl tak, že bylo tenké jako polovina lidského vlasu. Poté vzal laserový paprsek a zhruba ve středu vlákna jím vyvrtal šišatou dutinku.
Světelný paprsek, mířící k takovému vláknu, netuší, že se blíží konec jeho svobody. Vklouzne do něj a začne se pohybovat kolem jeho osy. Na konci vlákna si však světlo uvědomí fatální skutečnost – stejně jako Otesánek neproleze malým okénkem. Světlo, ať se snaží, jak se snaží, také nemůže ven. Rozměry konce vlákna jsou totiž menší než jeho vlnová délka. A tak je světlo uskladněno. Taková pastička nemá problém zachytit světlo jakékoliv vlnové délky, optické vlákno je pružné a stačí jej podle potřeby buď natáhnout, nebo smrštit. Praktické využití by tento objev mohl najít zejména ve světě výpočetní techniky. Díky možnosti zachytávat světlo by třeba mohla vzniknout paměťová média s gigantickou kapacitou.

Tajemství světla

Viditelné světlo je elektromagnetické záření o vlnové délce 400–750 nm. Vlnové délky světla leží mezi vlnovými délkami ultrafialového záření a infračerveného záření. Tři základní vlastnosti světla jsou svítivost (amplituda), barva (frekvence) a polarizace (úhel vlnění). Ne každý živočich má stejný rozsah vnímání elektromagnetického záření. Včely mají svůj rozsah posunutý směrem k ultrafialovému záření, naopak někteří plazi vnímají i infračervené záření. Světlo je skutečný sprinter, jeho rychlost ve vakuu dosahuje 299 792 458 metrů za sekundu. V praxi to znamená, že za jedinou vteřinu by světelná částice oběhla naši planetu sedmkrát.

reklama
Související články
Ruiny skalního města Machu Picchu v exotických kulisách peruánských And fascinují vědce už po celá desetiletí a přesto je neochuzují o další nečekaná překvapení. K tomu poslednímu došlo teprve na počátku letošního roku, když byly v oblasti prostřednictvím speciálního laserového radaru odhaleny dosud neznámé stavby.   Právě tato nejmodernější laserová technologie v poslední době sbírá […]
Tři vědecké týmy vyvinuly levný, účinný a recyklovatelný nanomateriál, který dokáže ve vodě nejen odhalit, ale také likvidovat těžké kovy, zejména kadmium a olovo. Jde o výsledek spolupráce vědců z Českého institutu výzkumu a pokročilých technologií – CATRIN Univerzity Palackého v Olomouci, ostravské VŠB-TUO a Katalánského institutu pro nanovědy a nanotechnologie (ICN2) v Barceloně. Kontaminace […]
Věda ve své honbě za poznáním nezná hranic. Důkazem nám může být tým odborníků, který ze severoamerického souvrství Morrison nadšeně informoval o nálezu  pestré směsky pozůstatků obojživelníků, které vyzvrátilo jiné zvíře.    150 milionů let staré zvratky některého ze zástupců čeledi kaprounovitých, kteří cíleným zvracením pozřené potravy běžně matou predátory, podle odborníků odhalují, že starověké […]
Dokážou vědci docílit toho, aby byla voda vodivá podobně jako třeba měděný drát? Na první pohled se to může zdát jako holý nesmysl, jenže mezinárodní vědecký tým pod vedením Pavla Jungwirtha z Ústavu organické chemie a biochemie AV ČR dokázal přijít s metodou, která něco takového skutečně umožňuje.   Samotná myšlenka, že by bylo možné […]
Neandrtálci byli po desetiletí vykreslováni jako tupí jedinci, kteří evoluční tlak nemohli zvládnout. Řada objevů z poslední doby tyto stereotypy vyvrátila, nicméně nová studie odhalila zásadní rozdíly v kognitivních schopnostech moderních lidí a neandertálců. Badatelé vložili gen neandertálského mozku do myší a malých mozkových struktur vypěstovaných z lidských kmenových buněk. Experimenty následně odhalily, že neandertálská […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz