Umíme opravit poškozený gen?

Logika genové terapie je zvláštní. Člověku s poškozeným genem lékaři vpraví do těla nový „zdravý“ gen. Je to ve své podstatě stejně absurdní, jako kdybychom si vedle rozbitého lustru pověsili na strop ještě jeden, nový a fungující.Logika genové terapie je zvláštní. Člověku s poškozeným genem lékaři vpraví do těla nový „zdravý“ gen. Je to ve své podstatě stejně absurdní, jako kdybychom si vedle rozbitého lustru pověsili na strop ještě jeden, nový a fungující.

Nůžky a záplaty na DNAV posledních třech letech biologové a genetici vyvinuli elegantní způsob, kterým je možné poškozené geny opravovat. Zatím byla tato metoda genové léčby prověřena jen v laboratorních podmínkách.

Využívá speciálně konstruovaných „molekulárních nůžek“ v podobě tzv. zinkoprstové nukleázy. Tento enzym dokáže v lidské dědičné informaci vyhledat přesně určené místo a v něm „přestřihnout“ dvojitou šroubovici. Buňka se pak snaží takto vzniklou „díru“ v DNA co nejrychleji spravit. Využívá k tomu i „záplaty“ v podobě krátkých kusů DNA, které genetici nabízejí buňkám spolu s „nůžkami“. Základní fígl nového typu oprav dědičné informace spočívá ve zhotovení takovýchto molekulárních nůžek, které přestřihnou DNA pacienta v místě, kde se nachází poškozený gen.

Záplatu pak tvoří „zdravý“ gen, který se vmáčkne na místo poškozeného úseku. Vypadá to jednoduše, ale genetici se pořádně zapotili, než opravy poškozených genů tímto způsobem zvládli. Vědecké týmy, které to dovedou, bychom spočítali na prstech jedné ruky.

Ty, které by je chtěly následovat, narážejí na problémy s patenty. Přesto věští odborníci zinkoprstovým nukleázám skvělou budoucnost.

Po prvním úspěchu přišla tragédiePrvní pokusy o genovou terapii, tedy jakousi „léčbu genem“, se odehrály v USA v roce 1990. Za více než půldruhého desetiletí si tento bezesporu perspektivní obor medicíny připsal na své konto několik úspěchů a zároveň i proher a tragédií.

Když v roce 1990 provedl americký lékař William French Anderson první takovou „léčbu genem“, čekali odborníci rychlý úspěch. Prognózy na první roky 21. století se zabývaly spíše odhadem rozšíření, jakého v něm genová terapie dosáhne.

Skutečnost se však se sny z počátků 90. let dosti rozchází, genová terapie zdaleka není rutinní léčbou. Jedna z hlavních příčin problémů genové terapie se skrývá za skutečností, že „zdravé“ geny vnikají do pacientovy dědičné informace víceméně náhodně a lékaři tak nemají nad zabudováním genu přímou kontrolu.

Krutou lekci z následků takového nekontrolovaného zabudovávání genů uštědřil osud třem malým Francouzům, léčeným genovou terapií z tzv. syndromu bublinových dětí. V důsledku poruchy jediného genu mají totiž oběti této dědičné choroby nefunkční imunitní systém.

Jsou proto ohroženy na životě i banální infekcí, jakou většina dětí vyleží za pár dní. Francouzský lékař Alain Fischer oznámil v roce 2000, že se mu podařilo vpravit do těla jedenácti „bublinových hochů“ nepoškozený gen, který jim začal v těle vyrábět bílkovinu nutnou pro vyzrávání imunitního systému.

Chlapci se uzdravili a Fischerův počin byl vítán jako první skutečný úspěch genové terapie. Bohužel, vlnu nadšení brzy ochladila série tragédií. U tří chlapců propukla leukémie. Jeden z nich navzdory všemožné péči lékařů zemřel.

Probuzený genový spáčPátrání po příčinách tragédie brzy ukázalo, kde se stala chyba. Fischer využil k pašování „zdravého“ genu do těla malých pacientů virus upravený metodami genového inženýrství. Nemocným hochům odebral z kostní dřeně krvetvorné buňky a na ně v laboratoři pustil virus upravený tak, aby vnášel do lidské dědičné informace „zdravý“ gen. Virus se v roli genetického „trojského koně“ osvědčil. Zabudoval gen do některých buněk a Fischer tyto buňky nejprve namnožil a pak je vrátil malým pacientům do kostní dřeně. Buňky začaly vyrábět krvinky s plně fungujícím „zdravým“ genem a hoši se začali uzdravovat.

Bohužel, třem pacientům vmáčkl vir ozdravný gen na místo v DNA, které sousedí s genem nezbytným pro množení krvinek. Gen plní svou roli během vývoje lidského plodu v těle matky. Po narození gen „usíná“. Přistěhování „ozdravného“ genu však spící gen probudilo a nastartovalo jej k horečné činnosti. Nedopatřením vyburcovaný gen nutil bílé krvinky ke zběsilému množení. Proměnil je v nádorové buňky a vyvolal tak leukémii.

Našlo se řešení Američtí vědci z University of Utah ve spolupráci se soukromou kalifornskou biotechnologickou společností Sangamo BioSciences provedli korekci genu v buňkách „bublinových chlapců“ způsobem, při kterém je nebezpečí vzniku leukémie zažehnáno.

Vytvořili zinkoprstovou endonukleázu, která je složena z enzymu stříhajícího DNA a tří různých zinkových prstů. Trio zinkových prstů zajistí, že se stříhací enzym zakousne v celé lidské dědičné informaci do dvojité šroubovice DNA v jednom jediném místě – tam, kde mají bublinové děti poškozený gen.

V tomto místě tyto molekulární nůžky také poškozenou DNA přestřihly. Se „zinkoprstovými nůžkami“ přidali vědci k buňkám i nenarušený zdravý gen a dosáhli u pětiny ošetřených buněk záměny poškozeného místa DNA za nepoškozenou genovou „záplatu“. Experimenty, které by směřovaly k léčbě bublinových dětí, jsou podle vědců ze společnosti Sangamo BioSciences jen otázka času.

Zinkovými prsty proti AIDSV plném proudu jsou další nadějné pokusy. Ty si kladou za cíl ověření jiných typů zinkoprstových nukleáz. Jeden z nich je konstruován pro opravu poškozených genů vyvolávajících chorobnou krvácivost čili hemofilii, jež patří k nejrozšířenějším dědičným chorobám.

Zajímavou možnost nabízejí zinkoprstové nukleázy lidem nakaženým virem HIV1. Původce smrtícího onemocnění AIDS potřebuje k proniknutí do bílých krvinek bílkovinu označovanou jako CCR5. Někteří lidé (asi pětina obyvatel Evropy) mají narušený gen pro bílkovinu CCR5 a jsou díky tomu zvýšeně odolní vůči infekci virem HIV1.

Vědci v laboratořích Sangamo BioSciences zkonstruovali molekulární nůžky, které umí rozstřihnout „zdravý“ gen pro bílkovinu CCR5 a umožní tak jeho náhradu za poškozený gen zajišťující zvýšenou odolnost k viru HIV1.

První zkoušky na lidech infikovaných virem HIV1 jsou plánovány na tento rok.

Co je to zinkový prst?Zinkový prst není kovová protéza. Tvoří nedílnou součást mnoha bílkovin. Tento „modul“ byl objeven už v roce 1986. Skládá se ze 30 aminokyselin, základních stavebních kamenů všech bílkovinných molekul.

Tvar „prstíku“ jim zajišťuje iont zinku uvězněný ve smyčkách bílkoviny. Zinkový prst dovoluje bílkovině navázat se na dvojitou šroubovici DNA. Bývá proto součástí bílkovin nezbytných pro „buzení“ vybraných genů. Přitom není prst jako prst. Pořadí aminokyselin v prstu určuje, na jaká písmena genetického kódu se prst v DNA naváže. Jeden prst dokáže rozlišit trojici písmen genetického kódu.

Aby nůžky správně stříhaly…Problémy léčby „molekulárními nůžkami“ zinkoprstových nukleázVědci se snaží zkonstruovat molekulární nůžky, které by stříhaly lidskou dědičnou informaci v buňkách v jednom jediném místě, jehož oprava je v plánu.

Před prvními zkouškami na pacientech se snaží zjistit, zda „nůžky“ nebudou „stříhat“ lidskou DNA ještě na jiných místech se stejným pořadím písmen genetického kódu. Pokud by se takový „falešný cíl“ vyskytl v jiném než poškozeném genu, mohlo by dojít k jeho narušení.

Léčba by pak mohla jeden genetický defekt v buňce odstranit a druhý vytvořit. Velkým problém představuje dodání dostatečného počtu „molekulárních nůžek“ do buněk s poškozenou dědičnou informací. Zinkoprstové nukleázy tvoří veliké molekuly a ty rozhodně nelezou do buněk samy od sebe.

Vědci jim k tomu pomáhají elektrickým výbojem, jenž vytvoří na přechodnou dobu v membráně buněk „průchody“, jimiž se „nůžky“ protáhnou do buněčného nitra. Buňky kostní dřeně, které jsou pro léčbu mnoha dědičných chorob nejužívanější, ale podobné elektrické šoky nesnášejí a mnohé z nich hynou.

Jsou patenty brzdou výzkumu?Rozvoj moderních biotechnologií do značné míry brzdí patenty, kterými mají klíčové procedury chráněny nejrůznější výzkumná pracoviště. Mnoho patentů potřebných pro úspěšnou léčbu dědičných defektů zinkoprstovými nukleázami vlastní kalifornská biotechnologická společnost Sangamo BioSciences.

Jde především o pořadí aminokyselin v zinkových prstech a o to, na jaká místa DNA se jaký „prst“ váže. Řada vědců ale výsledky svého výzkumu zinkových prstů ze zásady nepatentuje a zveřejňují je na volně přístupných webových stránkách.

Zveřejněné objevy už nikdo patentovat nemůže a jsou tudíž volně přístupné všem, kdo by je mohli využít pro léčbu dědičných chorob.

Autor: Prof. Ing. Jaroslav Petr, DrSc.
Rubriky:  Genetika
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

„Fujtajblík“ již nebude kráčet po mořském dně

„Fujtajblík“ již nebude kráčet po...

Na dně moří a oceánů žijí skutečně prazvláštní tvorové, řadí se mezi ně...
Byl megalodon skutečně mega?

Byl megalodon skutečně mega?

Obří megalodon (Carcharocles megalodon) je živočich, který svou velikostí...
Znečištěná voda v oceánech rozpouští žraloky zaživa

Znečištěná voda v oceánech...

Vědecký tým z University of Cagliari nedávno odhalit další smutný důsledek působení...
Šípové žáby opět v Praze

Šípové žáby opět v Praze

Návštěvníci Zoo Praha teď mají jedinečnou příležitost prohlédnout si hned...
Čeští vědci zachraňují africkou divočinu

Čeští vědci zachraňují africkou...

Tým českých vědců pod vedením zoologů Arthura Sniegona a Tomáše...
Poznejte život netopýrů zblízka

Poznejte život netopýrů zblízka

Mezinárodní noc pro netopýry proběhne letos již po čtyřiadvacáté. Tradiční...
Co zabilo slony?

Co zabilo slony?

Pro vědce byla nedávná smrt stovek slonů v africké Botswaně záhadou. Nyní se však zdá,...
Mechanické ploty nebo elektřina?

Mechanické ploty nebo elektřina?

Desítky tisíc až statisíce kaprovitých ryb ročně táhnou z nádrže Lipno do horní...
Digitální ilustrace zachycující přírodu

Digitální ilustrace zachycující...

Jak lze vytvářet ilustrace divoké přírody pomocí technologií, ukazuje nová...
Zvířata ohrožená ohněm

Zvířata ohrožená ohněm

Na přelomu roku 2019 a 2020 zasáhly Austrálii ničivé požáry, které měly...

Nenechte si ujít další zajímavé články

Pozor na klíště! Nebezpečí létem zdaleka nekončí!

Pozor na klíště! Nebezpečí létem...

Tento nepříjemný parazit nás bohužel neohrožuje jen během letních...
Nejkrásnější hrady a zámky na světě

Nejkrásnější hrady a zámky na světě

V historii sloužily hrady jako obrana před nájezdy nepřátel a zámky...
První akciová společnost: Komu vyfoukli Nizozemci prvenství v obchodu s kořením?

První akciová společnost: Komu...

Nizozemské lodě míří na konci 16. století k indickým Ostrovům koření a vrací se...
Největší tajemství NASA

Největší tajemství NASA

Přistál člověk opravdu na měsíci? Udělal Neil Armstrong...
Byl Český ráj posvátným místem Keltů?

Byl Český ráj posvátným místem...

Na území Českého ráje se nachází velké množství svatyní a posvátných lokalit...
Legenda O sedmi spáčích: Komu patří obrovské hroby v Tunisku?

Legenda O sedmi spáčích: Komu...

Na jihu Tuniska se nachází slavná osada Chenini, kam se sjíždějí turisté...
Karel IV.: Měl zkušenosti s nevysvětlitelnými jevy?

Karel IV.: Měl zkušenosti s...

Dnes si připomínáme 700 let od narození českého krále a římského císaře Karla...
Peruánská svatyně Chavin de Huantar: Starší než Stonehenge

Peruánská svatyně Chavin de...

Na rozdíl od proslulého Stonehenge tuto svatyni zná jen málokdo. A přitom je podle...
VIDEO: Kuličková dráha, od které neodtrhnete oči!

VIDEO: Kuličková dráha, od které...

Dřívka, magnety, pružinky a kuličky. Stačí pár...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.