Kuriózní mikročočky

Další fotometrický způsob je založen na principu mikročoček. Není to tak dávno, co tuto metodu většina astronomů vnímala pouze jako kuriozitu a s jejím využitím při lovu exoplanet se vůbec nepočítalo.Další fotometrický způsob je založen na principu mikročoček. Není to tak dávno, co tuto metodu většina astronomů vnímala pouze jako kuriozitu a s jejím využitím při lovu exoplanet se vůbec nepočítalo.

Jev gravitační čočky vzniká zakřivením paprsků elektromagnetického záření vzdáleného objektu v gravitačním poli bližšího hmotného tělesa, nacházejícího se mezi objektem a námi. Při vzácné konstelaci, kdy se Země, „čočka“ a objekt nacházejí na jedné přímce, pozorujeme tzv. Einsteinův prstenec, v ostatních případech pak několik různě deformovaných a zvětšených obrazů vzdáleného objektu. Když se podíváte skrz vinnou skleničku na nějaký jasný zdroj světla, spatříte několik jeho obrazů. Sklenice přitom funguje stejně jako gravitační čočka, která pozemšťanům přiblíží hodně vzdálenou galaxii.

Galaxie jako zvětšovací lupy
S myšlenkou, že by ve vesmíru měly existovat takové „gravitační lupy“, přišel v roce 1936 Albert Einstein. Výpočty však ukázaly, že půjde o úhlově velmi malé a především značně slabé objekty. Proto sám geniální fyzik tehdy přiznal, „šance spatřit tento úkaz není příliš veliká“. To platilo po čtyři desetiletí, avšak od konce 70. let se podařilo takových přírodních zvětšovacích skel objevit asi padesát, nyní především díky Hubbleovu kosmickému teleskopu. Tìmito gravitačními čočkami však byly vzdálené galaxie či jejich kupy a slouží především kosmologům.
Teoreticky se může stát, že se přesně na spojnici Země a vzdálené hvězdy ocitne další objekt, jinak neviditelný. V gravitačním poli takového objektu dojde k ohybu světla a my bychom mohli sledovat několik obrazů vzdálené hvězdy. Takové mikročočky mají však natolik malou hmotnost a tedy i slabé gravitační pole, že výsledný obraz má průměr nejvýše několik miliontin vteřiny, tedy hluboce pod rozlišovací schopností přístrojů.

Jedna šance za milion let
Nicméně jev se přece jen projeví a to fotometricky. Pokud před nějakou velmi vzdálenou hvězdou prochází slabě zářící, ale velmi hmotné těleso, můžeme zaznamenat postupný nárůst a pokles její jasnosti. Pokud okolo procházejícího tělesa obíhá ještě planeta, může se i ona na křivce jasnosti projevit jako krátkodobé zjasnění.
Jestliže čočku tvoří dva objekty, v našem případě hvězda a planeta, závisí tvar křivky na poměru jejich hmotností a na úhlové vzdálenosti hvězda–planeta. Po většinu času bude křivka stejná jako v případě jednoduché čočky. Pouze na několik hodin (primární zdroj má za následek zjasnění trvající typicky několik desítek dnů) se zde projeví další zjasnění. Doba, po kterou lze sekundární (z hlediska doby trvání, nikoli jasnosti) maximum pozorovat, závisí na hmotnosti čočkující planety.
Je to ovšem komplikovanější: před konkrétní hvězdou přejde „fokusující“ objekt v průměru jednou za milion let! Ovšem naštěstí dovedeme každou noc měřit jasnost několika milionů hvězd, takže naděje, že zachytíme gravitační čočku, je zcela reálná. Podstatnou vadou je fakt, že měření již nebudeme nikdy moci zopakovat a že tedy exoplanetu nemůžeme nadále studovat ani objev ověřit. Proto nám tato metoda poskytuje spíše orientační přehled vhodný do statistik.

Čočky zobrazují planety
Idea, že by tímto způsobem mohly být pozorovány i případné planety v okolí hvězd,se objevila bezprostředně poté, co byly gravitační mikročočky experimentálně dokázány. A překvapivě zaznamenala úspěch.
První pozorování planety, jež způsobila zjasnění bezejmenné hvězdy ležící směrem ke středu galaxie se uskutečnilo roku 1998 v rámci projektu MACHO. Světelné změny naznačují, že má hmotnost 0,002–0,01 % hmotnosti hvězdy, kolem níž obíhá ve vzdálenosti asi 300 milionů km. Nejistota je způsobena tím, že zachycené světelné změny nejsou o moc větší než chyba měření.
Mateřská a současně „fokusující“ hvězda nebyla pozorována přímo, nicméně se zdá, že je méně hmotná než Slunce (odhadem 20–60 %). Z toho vyplývá hmotnost planety mezi Zemí a Neptunem. Jiné pozorování odhalilo poprvé planetu, obíhající kolem dvojhvězdy.

Zpožďování záblesků pulsarů
Další metoda, kterou lze odhalit existenci neviditelných průvodců, je použitelná pouze u pulsarů. Tak, jak oběžnice hýbe pulsarem, sledujeme zpožďování nebo zrychlování jednotlivých záblesků.

Tento objev byl velkým překvapením zejména proto, že hvězda, která se stane pulsarem, existuje v tomto stavu jen krátkou dobu. Z toho vyplynulo, že vznik planet je z astronomického hlediska poměrně rychlou událostí. Samotný výbuch, který stadiu pulsaru předchází, planetám nijak zvlášť neublíží (z hlediska mechaniky). Musíme konstatovat, že na původ planet u pulsarů neexistuje jednotný názor. Mnozí astronomové se domnívají, že oběžnice mohou vzniknout v okolí hvězdy během posledních fází jejího bouřlivého života.
Touto metodou byla odhalena existence třetího tělesa v binárním pulsaru PSR B1620-26 v kulové hvězdokupě M4 v souhvězdí Štíra, vzdálené od nás 1,8 kpc. Pulsar má za průvodce bílého trpaslíka a hnědého trpaslíka nebo exoplanetu o hmotnosti asi 10x větší, než je hmotnost Jupiteru.

Další způsoby detekce
Odhad podle rychlosti rotace hvězdy
Ze spektra hvězdy lze určit mimo jiné i její rotační periodu. Již dlouho se předpokládá, že hvězdy, okolo nichž jsou planetární soustavy, předaly část svého rotačního momentu právě svým planetám. U pomalu rotujících hvězd lze tedy usuzovat na planety, ale nejde o metodu průkaznou a kromě toho nám vůbec nic neřekne o struktuře planetárního systému. Nejde tedy o detekci v pravém slova smyslu.
Pozorování hvězdných supererupcí
V minulosti jsme několikrát u hvězd spektrálních typů F až G pozorovali supererupce o energiích stokrát až desetimilionkrát větších, než nejmohutnější erupce pozorované na Slunci. Jednou ze spekulativních příčin těchto erupcí, trvajících hodiny až dny, by mohly být procesy mezi magnetickými poli centrální hvězdy a velmi blízko obíhajících planet Jupiterova typu.
Pozorování v infračerveném oboru spektra
Vznikající planetární soustava se může prozradit během poslední fáze svého vzniku. Při srážkách hmotných těles dojde k jejich roztavení, které by se mělo prozradit zvýšenou emisí v infračerveném oboru spektra. K tomuto jevu ovšem dojde pouze v případě malé rychlosti srážky – kolem 10 km/s. Předpokládá se, že teplota povrchu tělesa po srážce setrvá při teplotě 2000 K po dobu několika tisíc let (impakty na větší tělesa budou svítivější, ale krátkodobější).
Přímé zobrazení
Tato metoda zatím naráží principiálně na dva problémy. Exoplanety jsou natolik blízko své centrální hvězdy, že je nejsme zatím schopni od sebe rozlišit a běžné hvězdy typu Slunce jsou nesrovnatelně jasnější než jejich planety.
Kdybychom studovali naši vlastní soustavu, zjistili bychom, že planeta bude miliardkrát méně jasná než Slunce. Ze vzdálenosti již jen 15 světelných roků by úhlová vzdálenost Jupitera od Slunce byla kolem jedné vteřiny. Vzhledem k tomu, že pozemský seeing (???) se projevuje ve stejném řádu, je přímé pozorování planety pozemským dalekohledem bez využití systému adaptivní optiky nemyslitelné. Cílem zdokonalení přímých zobrazovacích metod je proto v první řadě pokus o potlačení vlivu atmosférické turbulence (adaptivní optika) a  dále snížení rozptýleného světla hvězdy (koronální masky).
V neposlední řadě je nutné zvýšení kontrastu hvězda/planeta, kupříkladu  pozorováním ve větších vlnových délkách. Je známo, že planety pohlcují záření své hvězdy, ohřívají se a tepelnou energii vyzařují v infračervené oblasti, kde hvězda podobná Slunci příliš nezáří. Při takovém pohledu na naši soustavu by Jupiter byl výraznějším zdrojem tepelného záření než Slunce. Avšak i infračervené záření je podobně jako viditelné světlo obtížně detekovatelné a překážkou zůstává i nedostatečná rozlišovací schopnost našich dosavadních přístrojů. 

Potřebujeme dalekohledy ve vesmíru
Přímé zobrazení je tedy ještě zatím hudbou budoucnosti – ale nemusí to být budoucnost příliš vzdálená. Odborníci nyní doufají, že nejpozději do 10 let budou mít podobné snímky k dispozici. Největší nadějí je výstavba velkých interferometrických dalekohledů v kosmickém prostoru mimo Zemi, které budou schopny alespoň některé exoplanety pozorovat přímo. V konečné fázi budeme schopni zkoumat jednotlivé exoplanety o velikosti Země spektroskopicky a usilovat o spektroskopický výzkum a pozorování detailů na jejich povrchu – ale to opravdu nebude dřív než za několik desítek let.

Rubriky:  Astronomie
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Webbův teleskop zná první cíle svého výzkumu

Webbův teleskop zná první cíle...

Plynný obr Jupiter, organické molekuly v mračnech formujících...
Slunce se dočká nových hvězdných sousedů

Slunce se dočká nových hvězdných...

Náš nejbližší hvězdný soused? Už na základních školách se děti...
Nadějná exoplaneta, která míří k naší sluneční soustavě

Nadějná exoplaneta, která míří k...

Pouhých 11 světelných let od Slunce byla objevena planeta o velikosti Země s...
Návštěvník ze vzdáleného vesmíru prolétá sluneční soustavou

Návštěvník ze vzdáleného vesmíru...

Americký úřad pro letectví a kosmonautiku (NASA) sleduje zvláštní...
Kolem Země proletěl asteroid

Kolem Země proletěl asteroid

Včera proletěl ve vzdálenosti 44 000 kilometrů kolem Země asteroid pod...
Chlormetan? Ve vesmíru žádná velká vzácnost

Chlormetan? Ve vesmíru žádná...

Pozorování provedená pomocí radioteleskopu ALMA a kosmické sondy...
Když si hvězda hraje s bublifukem…

Když si hvězda hraje s...

Astronomové využili schopnosti radioteleskopu ALMA a pořídili záběr bubliny...
Které hvězdy se blíží ke Slunci?

Které hvězdy se blíží ke Slunci?

Pohyb více než 300 tisíc hvězd pozorovaný observatoří ESA Gaia ukázal,...
Skryté, leč mohutné zásoby plynu ve vzdálené galaxii

Skryté, leč mohutné zásoby plynu...

Astronomové využili radioteleskop ALMA (Atacama Large Millimeter/submillimeter...
Dosud nejdetailnější pohled na cizí hvězdu

Dosud nejdetailnější pohled na...

Astronomům se s použitím interferometru ESO/VLTI podařilo získat dosud...

Nenechte si ujít další zajímavé články

Hrozivé riziko wi-fi signálu: Co všechno nám můžou hackeři ukrást?

Hrozivé riziko wi-fi signálu: Co...

Bezdrátový přístup k internetu je dnes k dispozici v hotelech, na...
Unikátní hříčky přírody! Sněhobílý aligátor, žirafa i klokan

Unikátní hříčky přírody! Sněhobílý...

Zbarvení je jejich prokletím. V přírodě jsou natolik nápadní, že se stávají...
Peníze, drogy a smrt: Kdo byli nejbohatší drogoví dealeři? 

Peníze, drogy a smrt: Kdo byli...

Lesk zlata, na zakázku vyrobené zbraně a především obrovská moc, na kterou mnozí...
Laponská válka: Kterak se Finové pustili do křížku s Němci!

Laponská válka: Kterak se Finové...

V září 1944 bylo již jen otázkou času, kdy nacistické Německo prohraje...
Kreacionismus kontra evoluce: Stvořil Bůh člověka?

Kreacionismus kontra evoluce:...

Biblická kniha Genesis popisuje stvoření světa jasně: „Na počátku Bůh...
Zůstaly prvorepublikovému politikovi v uhelné aféře za prsty miliony korun?

Zůstaly prvorepublikovému...

„Pan Stříbrný vytvořil z podplácení, z tohoto nepořádku a nečistoty přímo soustavu,“...
Poprava nacistické bestie: K.H.Frank žadonil o milost!

Poprava nacistické bestie:...

Na čele někdejšího suveréna se objeví krůpěje studeného potu. Nepřítomný...
Krvavé Vánoce: K jakému zločinu došlo 22. prosince 1986?

Krvavé Vánoce: K jakému zločinu...

Oprátka na šibenici v suterénu pankrácké věznice se 2. února 1989 napne...
Cítíte se bez energie? Tato místa vám ji dodají!

Cítíte se bez energie? Tato místa...

EpochaPlus.cz představuje místa, která vám údajně dodají energii. Které z nich...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.