Domů     Technika
Vejde se celá chemická laboratoř na mikročip?
21.stoleti 21.1.2004

Zjistit stav inzulinu v krvi pacienta či vrozenou dědičnou vadu přímo v lékařské ordinaci během několika minut, detekovat nervové látky přímo na bojišti v několika okamžicích, prozkoumat, zda podezřelý balíček obsahuje vysoce explozivní výbušninu, – to vše umožňuje nová technologie »Laboratoř na mikročipu«.Zjistit stav inzulinu v krvi pacienta či vrozenou dědičnou vadu přímo v lékařské ordinaci během několika minut, detekovat nervové látky přímo na bojišti v několika okamžicích, prozkoumat, zda podezřelý balíček obsahuje vysoce explozivní výbušninu, - to vše umožňuje nová technologie »Laboratoř na mikročipu«.

Díky novým technologiím se sen lékařů, vojáků a chemiků mění v realitu. Základní koncept chemické laboratoře na čipu (více známý pod anglickým termínem »Lab-on-a-Chip«) byl vyvinut počátkem devadesátých let dvacátého století ve Švýcarsku ve farmaceutické společnosti Ciba-Geigy. Nápad to byl jednoduchý – integrovat všechny kroky prováděné za normálních okolností v chemické laboratoři do několikacentimetrového zařízení, které laboratoř zastoupí v extrémních situacích. Práci by měl navíc zjednodušit vestavěný systém, který bude schopen provést veškeré analýzy sám a automaticky. Malé rozměry  měly přinést mnoho výhod – analýzy by mohly být prováděny na tom samém místě, kde se vyskytne zkoumaný vzorek. Nebude nutné následovat klasický zdlouhavý postup odvozu chemikálií (vzorků) do laboratoří. A ještě jedna výhoda, kterou si všichni slibovali: tuto miniaturní laboratoř na mikročipu lze vyrábět ve velkých sériích, stejně jako například počítačové čipy, a tudíž bude levná.

Za vším hledej peníze
Zprvu základní výzkum se v druhé polovině devadesátých let stal horkou oblastí. Mnoho vědců a firem vidělo možnost, jak změnit způsob, jakým se dnes provádějí chemické analýzy – a vydělat při tom miliony dolarů. Jen pro rok 2005 odhaduje společnost BioInsight trh pro »laboratoř na mikročipu* na jednu miliardu amerických dolarů. Na vývoji pracuje více než 150 společností v celém světě. Jelikož materiál na konstrukci laboratoře na čipu je podobný tomu, ze kterého se vyrábějí čipy počítačové, není divu, že do výzkumu investují desítky milionů dolarů nejen farmaceutické společnosti, ale také firmy jako Intel, Siemens či IBM.

Laboratoř na mikročipu – jak to vlastně funguje
Laboratoř na mikročipů má s počítačovými mikročipy několik společných vlastností. Za prvé svoji velikost – několik centimetrů čtverečních. Za druhé materiál -je složena z materiálů podobných těm, které se používají na o výrobu počítačových čipů – z křemíku nebo s z oxidu křemičitého (laicky »ze skla«). Avšak 5 materiály a velikostí veškerá podobnost počítačových a chemických mikročipů končí. Laboratoř na mikročipů je komplikovaný systém kanálků s průměrem několika stovek nanometrů až desítek mikrometrů a délkou několika milimetrů až centimetrů, které se podle potřeby kříží, rozvětvují, ústí do mikroreaktorů, mikromixérů, separačních kanálků a detekčních cel. Zkoumaný vzorek putuje kanálky, ve kterých se setká s reakčním činidlem (to proto, aby byl pro detektor»viditelný*), se kterým je transportován do mikromixéru a poté následuje dělení látky, která nás zajímá, od těch ostatních. Na konci celého procesu je detektor, který nám nakonec poví, zda a v jaké koncentraci je daná látka přítomna. Tyto informace se pak zpracují v miniaturním počítači a vám se na displeji objeví kýžený výsledek. A to vše díky malým rozměrům kanálků, kterými kapalina se vzorky a reagenciemi putuje, v několika málo vteřinách.

Elektroosmotické pumpy
Kapalina s chemickými látkami se v kanálcích mikročipu nepohybuje díky tlakovým pumpám, které se v laboratořích standardně používají – to by bylo příliš složité, objemné, a tudíž drahé. Je transportována pomocí jevu zvaného elektroosmóza. Elektroosmotický tok je založen na tom, že povrch kanálku tvořený sklem má v neutrálním či zásaditém roztoku záporný náboj (díky přítomnosti siloxanových skupin), který je kompenzován tenkou vrstvičkou iontů s převážně kladným nábojem. Vložíte-li stejnosměrné napětí (typicky několik tisíc voltů), tato vrstvička kladných nábojů se rozpohybuje směrem ke katodě a díky vnitřnímu tření se spolu s ní pohybuje celý obsah mikrokanálku. Elektroosmotický tok se uplatňuje díky mikrometrovým rozměrům kanálků a způsobuje, že kapalina se dá do pohybu pouze mezi místy, kde je aplikováno elektrické pole. Chytrým přepínáním elektrického pole můžeme pohybovat kapalinou pouze v některých částech mikročipu, a tak ani při složitém větvení mnoha kanálků není nutné používat záklopky či ventily, jak by bylo nutno, kdybychom používali tlakové pumpy. A co více – elektroosmotická pumpa díky malé spotřebě elektrické energie může fungovat celý den na tužkovou baterii.

Miniaturizace přináší nové potíže
Tím, že laboratoř na čipu obsahuje mnoho křížících se kanálků s průměrem mikrometrů, se dostáváme na neznámou půdu – kapaliny se chovají úplně jinak, než jsme byli zvyklí. Problémem je například míchání. V miniaturních kanálcích je proudění kapalin laminární, nikoliv turbulentní, jako například v širokém potrubí. Turbulentní proudění svými »turbulence-mi« pomáhá promíchat kapalinu, laminární  proudění je spořádané bez turbulencí, a proto se dva souběžné proudy v jednom kanálku prakticky nesmísí – tedy alespoň ne v požadovaném krátkém intervalu. Je tomu třeba pomoci komplikovanými mikroreaktory a mikromixéry, nad jejichž efektivní konstrukcí si stále láme hlavy mnoho výzkumných týmů. A nejen to. Vysoká koncentrace nejrůznějších prvků na několika centimetrech čtverečních vystavuje čip nebezpečí, že se jednotlivé miniaturní součásti budou navzájem ovlivňovat – jinak, než to konstruktéři zamýšleli (tento jev se označuje jako »crosstalk«). A pokud si uvědomíme, že v brzké budoucnosti nás bude čekat přechod od rozměrů mikrometrových k nanometrovým, je zřejmé, že komplikacím zdaleka není konec – spíše začátek.

LABORATOŘ NA MIKROČIPU DO KAŽDÉ RODINY
Pro nás, obyčejné smrtelníky, bude nejdůležitější použití mikročipů pro analýzu v medicíně. Miniaturní laboratoře na mikročipu budou během několika let stát na stolech mnoha malých ordinací a do deseti let budou k prodeji v každé lékárně. Umožní vašemu lékaři okamžitě, bez několikadenního čekání na laboratorní výsledky z centralizované velké nemocniční laboratoře, stanovit diagnózu, zjistit, v jaké fázi vaše onemocnění je, které látky vám momentálně chybí a přebývají a zahájit o to rychlejší efektivní léčbu.
Snem marketingových štábů farmaceutických společností je v nedaleké budoucnosti dostat »laboratoř na mikročipu« do každé rodiny – kdo by si nechtěl za pár desítek euro ověřit bez chození k lékaři, zda má tu či onu chorobu, nebo zda má sklon k rakovině prsu… Nebo zda v podivné obálce číhá zákeřný antrax. Ale to už jsme zase zpět na začátku…

S MIKROČIPEM NA MARS
Laboratoř na čipu má samozřejmě také mírové využití. Malé rozměry laboratoře na mikročipu jsou obrovskou výhodou při výzkumu sluneční soustavy. Již není nutné vysílat kosmickou sondu pro odebrání vzorků z jiného kosmického tělesa a přivézt je k analýze na Zemi – a tím naši planetu potenciálně kontaminovat choroboplodnými zárodky.Laboratoř na čipu je schopna provádět složité chemické analýzy vesmírných těles a zkoumat látky, dokazující přítomnost života. To, že se vzorky nemusí vozit na Zemi, mění konstrukci sond, které budou provádět hloubkový průzkum polárních čepiček Marsu a oceánu Evropy. Budou menší a lehčí a díky laboratoři na čipu, nesené na své palubě, zjistí mnohem více informací. Tyto sondy se protaví ledovým krunýřem povrchu Europy či čepičkou Marsu a na jejich palubě umístěná laboratoř na čipu bude postupně odebírat roztavený led a analyzovat jej. Pokud čip nějaké stopy života nalezne, sonda vyšle zprávu orbitálnímu modulu a ten Zemi. To, že sonda v ledu zamrzne a bude i s laboratoří „obětována“ nevadí – důležité budou pouze ony zaslané informace.

S MIKROČIPEM ZA BIN LÁDINEM
Praktické užití lze nalézt všude, kam se podíváte: Vojáci, kteří potřebují životně důležité výsledky ne do několika hodin, jak je zvykem dnes, ale do několika vteřin. Malá přenosná laboratoř na čipu dokáže například zjistit přítomnost nervové bojové látky přímo na místě, které právě prozkoumává speciální jednotka U.S. Army. Malý čip umožní vojákům samozřejmě zjistit, jestli je látka přítomna v životu nebezpečné koncentraci a kterého typu látka je (Sarin, Soman, VX), ale také kdy byla (nervová látka) použita. Jak to?
Nervové bojové látky se poměrně rychle rozkládají na méně nebezpečné látky (alkyl methyl fosforité kyseliny), které jsou rozdílným alkylovým řetězcem typické pro každou z nich. Alkyl methyl fosforité  kyseliny následně velmi pomalu ztrácejí alkylovou  skupinu  a přeměňují se na methyl fosforitou kyselinu. Laboratoř na mikročipu dokáže všechny tyto látky od sebe oddělit a identifikovat. Na základě výskytu či absence jednotlivých látek (tzv. »otisků prstů«) pak připojený počítač dokáže snadno vyhodnotit přítomnost látky a dobu, která uplynula od jejího použití.

 

Předchozí článek
Další článek
Související články
Americká kosmická agentura NASA využije vodíkové vozidlo Toyota Lunar Cruiser pro svou nadcházejí pilotovanou misi na Měsíc. Šestikolové vozítko pro jízdu po povrchu umožní vědcům ještě detailnější průzkum zemské družice. Zapojení lunárního křižníku je jedním z hlavních bodů dohody o spolupráci, kterou NASA uzavřela s Japonskou agenturou pro výzkum vesmíru JAXA. Projekt stavby lunárního křižníku […]
Americký Národní úřad pro letectví a vesmír (NASA) ukončil vývoj vozítka VIPER. Jeho úkolem mělo být pátrání po vodě či dalších zdrojích na Měsíci. Jako důvod uvedla rostoucí náklady, odkládání startu, ale také možné ohrožení dalších projektů Původně měl VIPER započít svou misi k Měsíci už na sklonku minulého roku. Nakonec však NASA požádala o odložení […]
Na dně moře u japonského pobřeží bylo objeveno gigantické naleziště klíčových prvků pro výrobu baterií do elektromobilů, ložisko niklu a kobaltu. První vrty u ostrova Minami-Torišima budou zahájeny příští rok. Využívání ložiska v průmyslovém měřítku má být zahájeno v roce 2026. Podle nadace The Nippon Foundation, která v posledních měsících zkoumala mořské dno u ostrova […]
Filmový průmysl se neustále vyvíjí a nové technologie mu umožňují vytvářet stále realističtější a poutavější zážitky pro diváky. Jaké nejmodernější technologie se v současné době používají ve filmech k tomu, aby zmátly smysly diváků? Technologií, která posouvá současný filmový průmysl neuvěřitelným způsobem vpřed, jsou tak zvané počítačově generované obrazy neboli computer generated imagery (CGI). Jedná […]
Svět se mění… Elektrifikuje se Severní Amerika, Evropa i Čína. Musejí. Statisíce vědců ze všech koutů planety přicházejí se znepokojivými čísly. Jenže v blízké budoucnosti nebude nutné bojovat jen s růstem CO2 v ovzduší, zároveň se budeme potýkat s nedostatkem lithia, potřebným pro výrobu baterií do elektromobilů. Do roku 2040 podle analýzy Benchmark Minerals Intelligence […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz