Domů     Technika
Co dokáže zmražený čip? Nový rekord v rychlosti křemíku
21.stoleti 22.9.2006

Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.

Experimenty, které nyní provádějí společně vědci IBM a institutu Georgia Tech (USA), jsou součástí projektu, který má za úkol zjistit extrémní rychlostní meze nových čipů. Čip, jenž byl při demonstraci použit, patří mezi prototypy tzv. čtvrté generace výrobní technologie SiGe (křemík–germanium). Běžné čipy, které jsou například umístěny v procesorech normálních mobilních telefonů pracují s frekvencí 2 GHz, nový čip však zvládne svou práci s frekvencemi, které jsou vyšší než 500 GHz. Zpracuje tak 500 miliard cyklů za sekundu.
Není to ovšem tak jednoduché. Zmíněný extrémní výkon by jen těžko vznikal za normálních přírodních podmínek, které známe na naší planetě. Za velmi nízkých teplot jsou totiž čipy rychlejší, čip proto musel být zmražen na teplotu, která se velmi blíží absolutní nule (-273,15 °C). V laboratoři tak byla, díky chladícím médiím, jakým může být třeba helium, dosažena teplota -268,33 °C. 

Může to fungovat i za normální teploty?
Na první pohled by se mohlo zdát, že vzhledem k takové nízké teplotě není tento objev možné uplatnit v každodenní praxi. Čipu prostředí, pro které je mráz slabé slovo, dělá dobře, ale člověku by v takových podmínkách byla asi přece jen trochu zima.
Jenže, počítačové simulace ukázaly, že technologie SiGe, na které je nový čip založen, by mohla fungovat i při normální teplotě. Koneckonců, už nyní lze při pokojové teplotě dosáhnout hodnoty 350 GHz. A nejen to, teoreticky lze již dosáhnout i vyšších výkonů, blížících se k magické hranici 1000 GHz.

Jen křemík nestačí
Samotná technologie SiGe není nikterak nová, IBM ji představila už v roce 1989 a o devět let později se SiGe dočkala i masového využití v tranzistorech, potažmo v mikročipech.
V čem vlastně technologie SiGe spočívá? Drtivá většina dnešních čipů obsahuje křemík, to není nic nového. Křemík je sice pro výrobu polovodičových součástek ideální prvek, což technologové dávno vědí, ale zde je ještě přidána další složka, a to germanium. Kombinace křemíku a germania pak způsobuje, že mikročip dokáže pracovat podstatně rychleji a nevyžaduje příliš velký přísun energie. Tím je jeho provoz i úspornější.

Tajemství výroby krystalu
Protože pro výrobu většiny polovodičových součástek je polykrystalický křemík, který obsahuje malé množství nečistot, nepoužitelný, používá se křemík monokrystalický. Obvyklou metodou pro jeho výrobu je řízená krystalizace z taveniny, nazývaná Czochralského proces. Při něm je do křemíkové taveniny vložen zárodečný krystal vysoce čistého křemíku. Ten se přitom otáčí a pulzuje podle předem přesně definovaného programu, přičemž teplota taveniny je také velmi pečlivě monitorována a řízena.
Celý proces probíhá v nádobách z velice čistého křemene v inertní (netečné) atmosféře argonu. Na zárodečném krystalu se pak vylučují další vrstvy mimořádně čistého křemíku. Výsledný produkt, tedy křemíkový ingot, pak může mít až 40 centimetrů v průměru a délku do dvou metrů. Tento ingot je přitom tvořen jediným krystalem.
Vyrobená „tyčka“ se poté po ochlazení řeže na půl milimetru tenké vrstvy, leští se a teprve pak mají výrobny polovodičových součástek svou potřebnou výchozí surovinu. 

Nezvýší se výrobní náklady
Vývojáři z IBM počítají, že superrychlý křemík by mohl být využit i v mnoha dalších oblastech. Své uplatnění bezesporu najde v armádních systémech nebo v systémech pracujících na palubách kosmických lodí. Časem se ho dočkáme třeba i v běžné mobilní komunikaci. Nespornou výhodou, kterou si pochvalují zejména manažeři firem vyrábějících elektroniku, je i to, že výroba takových čipů nezvyšuje současné náklady.
Ani odborná veřejnost neskrývá své nadšení. „Společnosti Georgia Tech a IBM vůbec poprvé v historii ukázaly, že s komerční technologií na bázi křemíku, s použitím velkých plátů a levných výrobních technik kompatibilních s křemíkem, lze dosáhnout rychlosti až půl biliónu cyklů za sekundu,“ prohlásil John D. Cressler, profesor na katedře elektrického a počítačového inženýrství amerického institutu Georgia Tech. „Tento výzkum nově definuje hranice toho, čeho jsme schopni dosáhnout se SiGe nanotechnologiemi.“

Absolutní nula
je teplota při níž ustane tepelný pohyb částic čímž prakticky přestává existovat hmota. Nelze ji vlastně nikdy dosáhnout, ovšem řada laboratoří se k ní již velmi přiblížila. Obvykle je měřena ve stupních kelvina. Absolutní nula tak odpovídá 0 K. (– 273,15°C nebo – 459,67 °F).

Křemík
je polokovový prvek, kterého v zemské kůře rozhodně není málo. Tvoří 13% hmoty Země, ostatních kamenných planet a meteoritů. Slouží jako základní materiál pro výrobu polovodičových součástek, ale i jako základní surovina pro výrobu skla a je významnou součástí keramických a stavebních materiálů. Objev křemíku je připisován švédskému chemikovi J.Jacobu Berzeliovi (1824).

Germanium
je poměrně velmi řídce se vyskytující polokov, nalézající se obvykle jako příměs v rudách zinku a stříbra. Objevil jej roku 1886 německý chemik Clemens A. Winkler a pojmenoval jej podle své vlasti. Zajímavé je, že jeho existence byla předpovězena tvůrcem periodické tabulky prvků, ruským chemikem Dmitrijem Mendělejevem, který jej nazýval eka-silicium a poměrně přesně určil základní fyzikálně-chemické vlastnosti tohoto prvku.
V pevném skupenství se germanium chová jako polovodič, naproti tomu v kapalném skupenství je kovem, podobně jako třeba rtuť. Kromě polovodičů nachází germanium uplatnění i při výrobě světlovodné optiky, protože jeho přítomnost v materiálu optických vláken podstatným způsobem zvyšuje index lomu materiálu. Tato vlastnost se uplatní i ve výrobě speciálních optických součástek jako jsou čočky pro kamery s širokým úhlem záběru nebo optika pro zpracování signálu v infračervené oblasti spektra (přístroje pro noční vidění).

Související články
„Zločin století“ únosu Lindberghova syna roku 1935 a „soudní proces století“ O. J. Simpsona v roce 1995 – přibližně tak se dá ohraničit zlatá éra polygrafu. O vinně a nevině spolurozhoduje dodnes, navzdory neustálé kritice, odsouzení papežem i obecnému přesvědčení, že detektor lži lze oklamat. Lidský druh oplývá mimořádnou schopností udělovat světu řád a smysl, […]
Data. Informace. Soukromí. V digitálním věku nejcennější komodity současnosti. Otázka anonymity na internetu je aktuálnější než kdy dřív. Každý krok, který na internetu učiníme, zanechává digitální stopu, kterou mohou sledovat poskytovatelé internetových služeb, reklamní společnosti i další subjekty. Jak naše data ovlivňují naše soukromí a co na internetu sdílíme? Jestliže ještě ve 20. století byla […]
Vodíková mobilita se stává jedním z klíčových prvků dekarbonizace dopravy. Ačkoli se o vodíkovém pohonu hovoří jako o slibné technologii budoucnosti, jeho rozvoj v Evropě zatím probíhá nerovnoměrně. Česká republika se však v této oblasti posunula vpřed – má již čtyři veřejné vodíkové stanice, zatímco většina zemí EU stále nemá žádnou. Podle analýzy webu cistadoprava.cz, […]
Fakulta elektrotechniky a komunikačních technologií VUT se rozhodla od příštího akademického roku navýšit počet přijímaných studentů do magisterského studijního programu Space Applications ze současných 20 na dvojnásobek. Reaguje tak na kritický nedostatek kvalifikovaných pracovníků klíčových pro rozvoj místních firem působících ve vesmírném průmyslu. Vesmírný průmysl se na jižní Moravě v posledních letech rychle rozvíjí a […]
Toyota Motor Corporation oznámila, že vyvinula nový systém palivových článků třetí generace. Zcela nový systém je navržen pro komerční sektor a má stejnou životnost jako běžné vznětové motory. Vyznačuje se výrazným zlepšením výkonu, včetně úspory paliva a výrazného snížení nákladů ve srovnání s předchozí verzí. Kromě osobních vozidel bude tento vodíkový systém třetí generace rozšířen […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz
Provozovatel: RF HOBBY, s. r. o., Bohdalecká 6/1420, 101 00 Praha 10, IČO: 26155672, tel.: 420 281 090 611, e-mail: sekretariat@rf-hobby.cz