Domů     Technika
Co dokáže zmražený čip? Nový rekord v rychlosti křemíku
21.stoleti 22.9.2006

Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.Další technologický rekord vzal za své. V laboratořích společnosti IBM a Georgia Tech vznikl křemíkový čip, který dokáže pracovat nebývale vysokými frekvencemi. Takové čipy by mohly znamenat revoluci ve světě počítačů.

Experimenty, které nyní provádějí společně vědci IBM a institutu Georgia Tech (USA), jsou součástí projektu, který má za úkol zjistit extrémní rychlostní meze nových čipů. Čip, jenž byl při demonstraci použit, patří mezi prototypy tzv. čtvrté generace výrobní technologie SiGe (křemík–germanium). Běžné čipy, které jsou například umístěny v procesorech normálních mobilních telefonů pracují s frekvencí 2 GHz, nový čip však zvládne svou práci s frekvencemi, které jsou vyšší než 500 GHz. Zpracuje tak 500 miliard cyklů za sekundu.
Není to ovšem tak jednoduché. Zmíněný extrémní výkon by jen těžko vznikal za normálních přírodních podmínek, které známe na naší planetě. Za velmi nízkých teplot jsou totiž čipy rychlejší, čip proto musel být zmražen na teplotu, která se velmi blíží absolutní nule (-273,15 °C). V laboratoři tak byla, díky chladícím médiím, jakým může být třeba helium, dosažena teplota -268,33 °C. 

Může to fungovat i za normální teploty?
Na první pohled by se mohlo zdát, že vzhledem k takové nízké teplotě není tento objev možné uplatnit v každodenní praxi. Čipu prostředí, pro které je mráz slabé slovo, dělá dobře, ale člověku by v takových podmínkách byla asi přece jen trochu zima.
Jenže, počítačové simulace ukázaly, že technologie SiGe, na které je nový čip založen, by mohla fungovat i při normální teplotě. Koneckonců, už nyní lze při pokojové teplotě dosáhnout hodnoty 350 GHz. A nejen to, teoreticky lze již dosáhnout i vyšších výkonů, blížících se k magické hranici 1000 GHz.

Jen křemík nestačí
Samotná technologie SiGe není nikterak nová, IBM ji představila už v roce 1989 a o devět let později se SiGe dočkala i masového využití v tranzistorech, potažmo v mikročipech.
V čem vlastně technologie SiGe spočívá? Drtivá většina dnešních čipů obsahuje křemík, to není nic nového. Křemík je sice pro výrobu polovodičových součástek ideální prvek, což technologové dávno vědí, ale zde je ještě přidána další složka, a to germanium. Kombinace křemíku a germania pak způsobuje, že mikročip dokáže pracovat podstatně rychleji a nevyžaduje příliš velký přísun energie. Tím je jeho provoz i úspornější.

Tajemství výroby krystalu
Protože pro výrobu většiny polovodičových součástek je polykrystalický křemík, který obsahuje malé množství nečistot, nepoužitelný, používá se křemík monokrystalický. Obvyklou metodou pro jeho výrobu je řízená krystalizace z taveniny, nazývaná Czochralského proces. Při něm je do křemíkové taveniny vložen zárodečný krystal vysoce čistého křemíku. Ten se přitom otáčí a pulzuje podle předem přesně definovaného programu, přičemž teplota taveniny je také velmi pečlivě monitorována a řízena.
Celý proces probíhá v nádobách z velice čistého křemene v inertní (netečné) atmosféře argonu. Na zárodečném krystalu se pak vylučují další vrstvy mimořádně čistého křemíku. Výsledný produkt, tedy křemíkový ingot, pak může mít až 40 centimetrů v průměru a délku do dvou metrů. Tento ingot je přitom tvořen jediným krystalem.
Vyrobená „tyčka“ se poté po ochlazení řeže na půl milimetru tenké vrstvy, leští se a teprve pak mají výrobny polovodičových součástek svou potřebnou výchozí surovinu. 

Nezvýší se výrobní náklady
Vývojáři z IBM počítají, že superrychlý křemík by mohl být využit i v mnoha dalších oblastech. Své uplatnění bezesporu najde v armádních systémech nebo v systémech pracujících na palubách kosmických lodí. Časem se ho dočkáme třeba i v běžné mobilní komunikaci. Nespornou výhodou, kterou si pochvalují zejména manažeři firem vyrábějících elektroniku, je i to, že výroba takových čipů nezvyšuje současné náklady.
Ani odborná veřejnost neskrývá své nadšení. „Společnosti Georgia Tech a IBM vůbec poprvé v historii ukázaly, že s komerční technologií na bázi křemíku, s použitím velkých plátů a levných výrobních technik kompatibilních s křemíkem, lze dosáhnout rychlosti až půl biliónu cyklů za sekundu,“ prohlásil John D. Cressler, profesor na katedře elektrického a počítačového inženýrství amerického institutu Georgia Tech. „Tento výzkum nově definuje hranice toho, čeho jsme schopni dosáhnout se SiGe nanotechnologiemi.“

Absolutní nula
je teplota při níž ustane tepelný pohyb částic čímž prakticky přestává existovat hmota. Nelze ji vlastně nikdy dosáhnout, ovšem řada laboratoří se k ní již velmi přiblížila. Obvykle je měřena ve stupních kelvina. Absolutní nula tak odpovídá 0 K. (– 273,15°C nebo – 459,67 °F).

Křemík
je polokovový prvek, kterého v zemské kůře rozhodně není málo. Tvoří 13% hmoty Země, ostatních kamenných planet a meteoritů. Slouží jako základní materiál pro výrobu polovodičových součástek, ale i jako základní surovina pro výrobu skla a je významnou součástí keramických a stavebních materiálů. Objev křemíku je připisován švédskému chemikovi J.Jacobu Berzeliovi (1824).

Germanium
je poměrně velmi řídce se vyskytující polokov, nalézající se obvykle jako příměs v rudách zinku a stříbra. Objevil jej roku 1886 německý chemik Clemens A. Winkler a pojmenoval jej podle své vlasti. Zajímavé je, že jeho existence byla předpovězena tvůrcem periodické tabulky prvků, ruským chemikem Dmitrijem Mendělejevem, který jej nazýval eka-silicium a poměrně přesně určil základní fyzikálně-chemické vlastnosti tohoto prvku.
V pevném skupenství se germanium chová jako polovodič, naproti tomu v kapalném skupenství je kovem, podobně jako třeba rtuť. Kromě polovodičů nachází germanium uplatnění i při výrobě světlovodné optiky, protože jeho přítomnost v materiálu optických vláken podstatným způsobem zvyšuje index lomu materiálu. Tato vlastnost se uplatní i ve výrobě speciálních optických součástek jako jsou čočky pro kamery s širokým úhlem záběru nebo optika pro zpracování signálu v infračervené oblasti spektra (přístroje pro noční vidění).

Související články
Vesmír bude opět na dosah ruky. Od 20. do 26. října ožije Praha, Brno i další města festivalem Czech Space Week – největší přehlídkou kosmických aktivit v Česku. Česko má vlastní družice, podílí se na mezinárodních misích a brzy vyšle astronauta Aleše Svobodu na Mezinárodní vesmírnou stanici. To a mnoho dalšího oslaví 8. ročník Czech […]
Medicína Technika 15.10.2025
Řada lidí ji podceňuje. Ovšem chřipka není jen obyčejná rýmička. Koneckonců může vyústit v závažné zdravotní problémy a nakonec i smrt. Proto se proti této nemoci nechává mnoho lidí očkovat. Jenže vytvoření funkční vakcíny je tak trochu alchymie Rok co rok mají před sebou experti stejnou výzvu. Jejich úkolem je zvolit kmeny chřipky, které budou […]
Příroda Technika 14.10.2025
Nepoužívané smartphony mohou pomoci snížit množství elektroodpadu i těžbu vzácných kovů. V rámci dnešního Mezinárodního dne elektroodpadu na tento aspekt upozorňuje studie Fraunhofer Austria a ukazuje, že jen v českých domácnostech leží 11,3 milionu starých smartphonů plných cenných surovin. V Evropě se nachází až 642 milionů nevyužívaných smartphonů, z nichž 211 milionů by se po […]
Příroda Technika 11.10.2025
Snižování uhlíkové stopy s sebou nese také reporting. Do hry nově vstupuje umělá inteligence, která pomáhá firmám všech velikostí sledovat a řídit jejich dopad na životní prostředí. Díky chytrým algoritmům lze odhalit plýtvání energií, optimalizovat dopravu i produkci a zároveň ušetřit nemalé náklady.   Od tabulek k datové analytice Sledování uhlíkové stopy je relativně nová aktivita, […]
Objevy Technika 7.10.2025
Letošní Nobelova cena za fyziku byla udělena třem vědcům za průlomový výzkum kvantového chování v elektrických obvodech – konkrétně za ukázání kvantového tunelování a kvantování energie v systémech dostatečně velkých na to, aby je bylo možné držet v ruce. Jejich práce otevírá cestu novým kvantovým technologiím, od výkonnějších počítačů po citlivé senzory. Královská švédská akademie […]
reklama
Nejčtenější články
za poslední
24 hodin    3 dny    týden
reklama
Nenechte si ujít další zajímavé články
reklama
Copyright © RF-Hobby.cz
Provozovatel: RF HOBBY, s. r. o., Bohdalecká 6/1420, 101 00 Praha 10, IČO: 26155672, tel.: 420 281 090 611, e-mail: sekretariat@rf-hobby.cz