Jaký smysl mají sebevraždy planktonu?

Každá buňka našeho těla si nese ve svém nitru instrukci pro vlastní řízenou destrukci. Tato buněčná sebevražda se odehrává v mnohobuněčných organismech. Zaniklé buňky se obětují ve prospěch celku. Ochrání jej před chorobou, dovolí mu přežití a další vývoj. Tzv. programovaná buněčná smrt je ztělesněním mušketýrské zásady „jeden za všechny a všichni za jednoho“.Každá buňka našeho těla si nese ve svém nitru instrukci pro vlastní řízenou destrukci. Tato buněčná sebevražda se odehrává v mnohobuněčných organismech. Zaniklé buňky se obětují ve prospěch celku. Ochrání jej před chorobou, dovolí mu přežití a další vývoj. Tzv. programovaná buněčná smrt je ztělesněním mušketýrské zásady „jeden za všechny a všichni za jednoho“.

V poslední době věnují vědci velkou pozornost na první pohled zcela nesmyslné buněčné sebevraždě jednobuněčných organismů, jako jsou bakterie, prvoci nebo rozsivky. Existence jednobuněčného organismu sebevraždou definitivně končí. Není tu nikdo, komu by tato dobrovolná oběť posloužila a kdo by na ní vydělal. A nebo snad ano?

Každý týden nová generace!
Mikroskopické jednobuněčné organismy, označované souhrnně jako fytoplankton, čerpají z atmosféry oxid uhličitý a v procesu fotosyntézy ho mění na organické sloučeniny. Množstvím spotřebovaného oxidu uhličitého se tito mikroskopičtí obyvatelé moří a oceánů naprosto vyrovnají zeleným rostlinám ze souší všech kontinentů – od severské tundry přes horské lesy a nedozírné savany až po tropické deštné pralesy. Přitom objem veškerého světového fytoplanktonu netvoří nikdy více než 1 % objemu všech pozemských organismů. Znamená to jediné. Fytoplankton se rychle množí a zároveň masově hyne. Obrat všech jeho organismů je děsivě rychlý. Každý týden je nahrazen veškerý světový fytoplankton kompletně  novou generací.
Masové umírání fytoplanktonu vědce nijak netrápilo. Přičítali je na vrub nepříznivým podmínkám, chorobám nebo drobným mořským živočichům, tzv. zooplanktonu, který se fytoplanktonem živí. Nikoho ani nenapadlo, že by se na zániku fytoplanktonu mohla podílet i jeho masová sebevražda. Jako první pojal toto podezření americký biolog Paul Fialkowski, působící na Rutgers University v New Jersey.

Dobrovolná smrt v láhvi vody
Jeho objev rozšiřuje sbírku příběhů o vědcích, kterým pomohla slepá náhoda. Fialkowski pěstoval v laboratoři jednoho z nejhojnějších zástupců mořského fytoplanktonu – prvoka Emiliania huxleyi náležejícího mezi tzv. kokolitky. Jednou odcházel z laboratoře pozdě večer natolik unavený, že zapomněl v láhvích s kokolitkami doplnit čerstvou mořskou vodou. Následující ráno chtěl chybu napravit, ale bylo pozdě. Prvoci zmizeli. Zbyla po nich jen usazenina na dně kultivační láhve.
„Nikdy jsem nic podobného neviděl. Prvoci se prostě rozpustili,“ vzpomíná Fialkowski na klíčový moment.
Paul Fialkowski vyloučil, že by prvoci zhynuli obyčejnou smrtí. V těchto případech nehynou všechny buňky najednou. Některé přežijí, jiné jsou polomrtvé. Po uhynulých buňkách zbudou shluky mrtvé hmoty. Dokonalé rozpuštění všech prvoků nápadně připomínalo výsledek sebevraždy buněk v těle živočichů. Ty někdy hynou z vlastního popudu spuštěním samodestrukčního genetického programu. Takový způsob smrti buněk se odborně označuje jako apoptóza.

Sebevraždy jsou běžné i u rostlin
Podezření na sebevraždu prvoků potvrdily další pokusy. Živočišné buňky podléhají apoptóze poté, co uvedou ve svém nitru v činnost enzymy zvané kaspázy. V usazenině, která zbyla po „rozpuštěných“ kokolitkách, nalezl Fialkowski enzymy, jež se kaspázám živočichů nápadně podobaly. Také další procesy provázející „rozpouštění“ prvoků odpovídaly průběhu programované buněčné smrti.
Objev apoptózy u prvoků odstartoval rozsáhlé pátrání po projevech buněčné sebevraždy u dalších jednodušších organismů. Nakonec se ukázalo, že apoptóza je univerzální fenomén, který je vlastní většině forem pozemského života. Cílenou sebedestrukci zvládají rostliny, řasy i houby a dokonce i fotosyntetické bakterie.

Kdo vynalezl buněčnou sebevraždu?
Masové rozšíření buněčné sebevraždy v přírodě způsobilo zásadní zvrat v nazírání na tento podivuhodný proces. Vědci už jej nevnímali jako výsadní vymoženost zástupců živočišné říše. Pomalu si zvykali na představu, že jde o fenomén evolučně mnohem starší, jehož kořeny sahají do dob, kdy pozemské oceány oživovaly jen jednobuněční tvorové.
Které organismy daly buněčnou sebevraždu do vínku všem vyšším formám pozemského života? To nebylo jednoduché rozhodnout. Vědci odhalili hned tři skupiny bakterií, jež jsou vybaveny enzymy nápadně podobnými kaspázám živočichů. Nejbohatší arzenál vlastní kyanobakterie, jež jsou schopny fotosyntézy a někdy se shlukují do mnohobuněčných útvarů. Zdálo by se jen logické připsat evoluční vynález  kaspáz a řízené buněčné smrti na konto právě dávným předkům kyanobakterií. Bohužel tak jednoduché to není. Mikroorganismy si často vyměňují celé kusy dědičné informace. Svět bakterií v mnoha ohledech připomíná burzu genů, kde se handluje, obdarovává, ba i krade. Nelze proto vyloučit, že kyanobakterie svou jedinečnou výbavu pro buněčnou sebevraždu naloupily nebo dostaly od jejích skutečných „vynálezců“.

Vznik mitochondrií
Živočichové zřejmě získali schopnost buněčné sebevraždy od bakterií, které si jejich předkové „ochočili“.  Zajali je v nitru svých buněk a proměnili je na mitochondrie. Ty dnes slouží živočišným buňkám především k výrobě energie. Vedle toho sehrávají celou řadu dalších významných rolí. Kromě jiného se podílejí i na buněčné sebevraždě. Mitochondrie živočichů vznikly z bakterií označovaných jako alfa-proteobakterie a od nich jsme zřejmě zdědili geny pro řízení programované buněčné smrti. Rostliny přišly ke svým genům pro buněčnou sebevraždu podobně. Zřejmě je získaly od jednobuněčných řas, které zajaly v nitru svých buněk. Proměnily je na chloroplasty, jež mají za úkol vyrábět fotosyntézou z oxidu uhličitého sloučeniny bohaté na energii.

Záhada buněčné sebevraždy trvá
Kynaboakterie jako vynálezci buněčné sebevraždy tím nejsou ze hry. Jak alfa-proteobakterie, tak i jednobuněčné řasy mohly zdědit schopnost apoptózy právě od nich. To nelze zatím ani jednoznačně dokázat, ani přesvědčivě vyvrátit.
Záhada obestírá i samotný zrod buněčné sebevraždy. Zdá se, že původně byly sebevražedné enzymy používány pro každodenní život nebo pro boj o přežití ve stresu. Naznačuje to pátrání po enzymech podobných  kaspázám u jednobuněčných tvorů. Jednobuněčná rozsivka má těchto enzymů celkem šest. To je poměrně hodně, když vezmeme v úvahu, že rostliny jich skrývají ve svém sebevražedném arzenálu devět a člověk dvanáct. Rozsivka však používá k vlastní záhubě jen dva enzymy. Zbývající kvartet enzymů se podílí na běžných životních procesech.

A co takhle volné radikály?
Vědci proto předpokládají, že sebevražedné enzymy původně sloužily ke zdolávání následků  stresové zátěže a teprve druhotně byly při velmi silném, nezvladatelném stresu využity  k odstartování vlastní záhuby. Zdá se, že základním impulzem pro přehození výhybky z boje o život k dobrovolné sebevraždě byla záplava vysoce škodlivých volných radikálů. Tyto látky ochotně reagují s nejrůznějšími životně důležitými molekulami uvnitř buněk včetně dědičné informace a těžce je poškozují.
Fytoplankton páchá sebevraždu v nejrůznějších krizových situacích. Někdy jej k tomu ponoukne vysoká dávka ultrafialového záření, jindy napadení virem a nebo nedostatek živin, jako je oxid uhličitý nebo ionty železa. Tyto stavy nouze mají společné jedno – v buňkách fytoplanktonu se při nich hromadí volné radikály.

Válka s viry
Odhalení mechanismů buněčné sebevraždy u jednobuněčných řas, rozsivek a fotosyntetických bakterií ale nezodpovídá základní otázku: Proč jednobuněčný organismus spouští buněčnou sebevraždu, když to znamená jeho definitivní konec? Paul Fialkowski je přesvědčený, že iniciátory tohoto zdánlivě nesmyslného evolučního kroku jsou viry. Těch se nachází v mořské vodě obrovské množství. V každém kubickém centimetru mořské vody jich napočítáme stovky milionů. Většina z nich má spadeno na fytoplankton.
Kdysi dávno zřejmě některé viry našly způsob, jak zneužít enzymy buňky k jejímu zabití. Tyto enzymy byly předky dnešních sebevražedných kaspáz. Viry s jejich pomocí zabíjely fytoplankton, pokud se v jeho buňkách dostatečně namnožily a potřebovaly se dostat ven, aby mohly ve svém nekalém díle pokračovat. Jednobuněčný fytoplankton se musel téhle situaci přizpůsobit. Hledal zoufale způsob, jak zabránit virům v přístupu k destrukčním enzymům. Dařilo se mu to se střídavými úspěchy.

Obětování v zájmu celku?
Nakonec odhalily jednobuněčné organismy překvapivý tah, kterým virům jejich záměr překazily. Po nákaze virem nebránily vetřelci ve spouštění vražedných enzymů. Naopak, vyšly virům vstříc a samy odpálily „enzymatickou časovanou nálož“. Pokud se zahubily dřív, než se viry stihly dostatečně namnožit, stoupala šance na zastavení virového přívalu. Buňka, která takto spáchala sebevraždu, na svém sebeobětování zdánlivě nic nevydělala. To však nebyla tak úplně pravda. Záplava fytoplanktonu, který dokáže zbarvit rozsáhlé plochy mořské hladiny tak, že je to vidět pouhým okem i z paluby kosmických lodí obíhajících kolem Země, je tvořena obvykle masou blízce příbuzných jedinců sdílejících společné geny. Sebedestrukcí mikroorganismus chránil „své“ geny nacházející se v buňkách dalších příslušníků jeho druhu. Důvod k sebevraždě se u planktonu v zásadě neliší od sebevraždy buněk v těle mnohobuněčných organismů.  Vždy jde o oběť ve prospěch buněk se stejnou dědičnou informací. V případě fytoplanktonu žijí tyto buňky volně, nezávisle jedna na druhé. V případě mnohobuněčných tvorů tvoří buňky přísně organizovaný, celistvý organismus.

Silným pomohou, slabé zahubí
Sebevražda fytoplanktonu není tak úplně nezištná a v některých případech se jedná spíše o vraždu. Ze strany jednobuněčných organismů jde o činnost nezištnou a zároveň i sobeckou. Ukazuje se, že buňky napadené virem produkují látky, které silným pomohou a slabé zahubí. Buňky méně poškozené virem se pod vlivem těchto látek ukládají ke spánku. Vytvářejí nesmírně odolné útvary zvané cysty, v kterých mohou přečkat i dlouhotrvající nepřízeň osudu. U vážně oslabených buněk nastartují tytéž látky buněčnou sebevraždu.
Poznání zákonitostí buněčné sebevraždy jednobuněčných organismů fytoplanktonu má překvapivé praktické dopady. Fytoplankton tvoří základ potravní pyramidy  mořských organismů. Jeho vzestupy a pády se promítají do života v moři dramatickým způsobem. Závisí na nich například úlovek v rybářských sítích.

Fytoplankton je životodárný i nebezpečný
Fytoplankton sehrává významnou roli také v bilanci skleníkových plynů, a tak nám rozhodně nemůže být jedno, jak se mase jednobuněčných organismů ve světových mořích a oceánech vede. Zda prosperují a množí se, anebo samy sebe masově zabíjejí.
Některé „populační exploze“ fytoplanktonu mají bezprostřední tragické následky. Lidově bývají označovány jako „rudé přílivy“. Dochází při nich k přemnožení řas produkujících nebezpečné jedy. Často je voda řasami nápadně zbarvena, i když zdaleka ne vždycky je výsledná barva rudá.  Příkladem „rudého přílivu“ je populační exploze prvoka obrněnky druhu Karenia brevis. Jeho masy mění průzračnou mořskou vodu v kalnou „polévku“. Navíc produkuje obrněnka brevetoxin, který má smrtící účinky na nervový systém mnoha živočichů včetně člověka. Byly popsány i masové otravy, kdy lidé snědli brevetoxin s mušlemi, jež se živí filtrováním mořské vody a přijaly s potravou i přemnožené obrněnky a jejich toxiny.

Apoptóza čili buněčná sebevražda (lze vypustit)
Programovaná buněčná smrt má v těle živočicha za úkol zlikvidovat buňky tak, aby po nich zbylo co  nejméně „šrotu“. Maximum z obsahu uhynulých buněk lze recyklovat, a tak je tento způsob buněčné smrti nejen velmi rychlý, ale i „čistý“. Okolní buňky prakticky okamžitě zhltnou vše, co z buněčného „nebožtíka“ zbude. Po mrtvé buňce nezůstane zakrátko ani stopy.
Apoptóza je výsledkem mistrné souhry skupiny enzymů, které štípou dlouhá vlákna bílkovin na kratší části. Těmto enzymům se říká kaspázy. Od jiných enzymů štípajících bílkoviny se liší hlavně tím, že nenarušují bílkovinný řetězec náhodně, ale vybírají se k jeho „přestřižení“ zcela určitá místa s přesně určeným pořadím stavebních kamenů zvaných aminokyseliny.
Činnost jednotlivých kaspáz na sebe navazuje. Aktivovaná kaspáza předá pomyslný štafetový kolík pro další štípání bílkovin „spící“ neaktivní kaspáze tím, že od ní odštípne přebytečné části a tím ji „probudí“. Kaspázy tak postupně spustí celou lavinu enzymů rozrušujících buňku. Tito „buněční řezníci“ porcují na malé kousky dědičnou informaci, sekají na jednodušší části složité molekuly a trhají na cáry všechny buněčné membrány. Z buňky se oddělují malé váčky, zabalené do kusů natrhaných membrán. Uvnitř nesou naporcované části buňky. Právě tyto váčky jsou rychle pohlceny buňkami sousedícími s buněčným sebevrahem. Je to podobné, jako kdyby konzumovaly obsah sáčku s výživnou svačinou.

Červ potřebuje smrt buněk
Naprogramovaná buněčná sebevražda je pro vývoj a život stejně důležitá jako množení buněk dělením. Trochu to připomíná práci spisovatele. Ten si musí vedle dovednosti psát vypěstovat i schopnost škrtat nepotřebné nebo nepovedené pasáže. Jen tak vznikne opravdu dobré dílo.
Milimetrové tělo červíčka Caenorhabditis elegans rozepíše svůj příběh do 1090 buněk. Má-li se červ zdárně vyvíjet, musí 131 přesně určených buněk včas „vyškrtnout“. Červ má pro tyto potřeby v dědičné informaci zhruba několik desítek genů, které aktivuje a příslušné buňky podle jejich instrukcí spáchají sebevraždu. Bez toho by červíka postihly těžké vývojové defekty.

Ruka jako výsledek sebevraždy
Jedno z mistrovských děl sebevražedných buněk máme doslova na dlani. Jen se podívejte na své prsty. Co všechno dovedou! Přesně vpraví ozubené kolečko do hodinového strojku, jemně pohladí dítě po vlasech, pevně stisknou topůrko sekyry, s vervou prohrábnou kytarové struny. Během vývoje se ale naše ruka zakládá jako ploutvovitá „placka“. Prstíčky novorozence z nich vymodelovala teprve řízená sebevražda nadbytečných buněk.

Ochrana před buněčnými zrádci
Organizovaná sebevražda nás zbaví i buněk, které se zpronevěřily svému poslání. Během vývoje imunitního systému si organismus každého jednotlivce připraví obranné buňky, schopné zareagovat na všechny možné cizorodé vpády. V širokém arzenálu imunitní obrany tak zcela zákonitě vznikají i buňky, které by byly schopny napadnout vlastní organismus. Než však stačí „zrádcovské“ buňky zaútočit do vlastních řad, spáchají organizovanou, spontánní sebevraždu. A nebezpečí je zažehnáno.

Ochrana před viry
Při nákaze buňky ovládne virus její výrobní mašinerii a zneužije ji k výrobě záplavy nových virů. Co si má buňka s vetřelcem ve svém nitru počít?  Bojovat? Bránit se ze všech sil? Čím déle odolá, tím více virů v ní vznikne a tím větší nebezpečí hrozí ostatním buňkám. Za každou hodinu života nakažené buňky tvrdě platí celý organismus. Buňka řeší tuto situaci sebevraždou již v samém počátku okupace virem. Je to jako kdyby se osazenstvo zbrojovky rozhodlo vyhodit do vzduchu svou továrnu poté, co se jí zmocnil nepřítel. Mnohé viry se proto před  „buněčnou sabotáží“ chrání. Násilím zabrání hostitelské buňce v sebevraždě a donutí ji žít.

Rubriky:  Příroda
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Scink inspiruje roboty

Scink inspiruje roboty

Scinkovi obecnému (Scincus scincus) se přezdívá písečná ryba, a to proto, že...
Pod sopkou objeven obrovský rezervoár vody

Pod sopkou objeven obrovský...

Vědci z anglické Univerzity v Bristolu objevili pod vulkánem Uturuncu...
Teorie, která přežila všechny pokusy o vyvrácení

Teorie, která přežila všechny...

Před 101 lety, 25. 11. 1915, předložil Albert Einstein (1879 – 1955) konečnou verzi...
Astrofotografie měsíce září: závěrečné stádium vývoje hvězdy

Astrofotografie měsíce září:...

Zářijovým vítězem soutěže Česká astrofotografie měsíce se stal astrofotograf...
Krása ptačího pohybu

Krása ptačího pohybu

Ptáci (Aves) jsou pokládáni za potomky drobných teropodních dinosaurů, konkrétně...
Čeští vědci zjistili, jak zvířata vnímají magnetické pole Země

Čeští vědci zjistili, jak zvířata...

Vědci z Masarykovy univerzity v Brně zjistili, že se zvířata dokáží...
Seznamte se! Balistika!

Seznamte se! Balistika!

Balistika, neboli věda o pohybu a účinku střely, je neocenitelným pomocníkem...
Jak rostliny dobývají svět?

Jak rostliny dobývají svět?

Studie pod vedením ekologů z University v Konstanci, Mialy Razanajatovo a...
Jak se loví krokodýli?

Jak se loví krokodýli?

Navštivte spolu s výzkumníky území, na kterém žijí krokodýli. Kolik lidí musí být, aby...
Seznamte se! Píst!

Seznamte se! Píst!

Píst je pohyblivá součástka strojů sloužící k přenosu síly mezi mechanickým...

Nenechte si ujít další zajímavé články

3x zabijáci v lavicích: Komu se v hlavě honily zrůdné myšlenky?

3x zabijáci v lavicích: Komu se v...

Jsou mladí a neklidní. Hlavou se jim však mnohdy...
Ötzi: „Kosí“ vědce kletba pravěkého šamana?

Ötzi: „Kosí“ vědce kletba...

V horském sedle ötztalských Alp, ve výšce 3210 metrů,...
Anders Breivik: Falešný policista střílel do dětí!

Anders Breivik: Falešný policista...

Vládní čtvrť Regjeringskvartalet v norském Oslu tepe...
Kráter zvaný Vredefort: Největší jizva na naší planetě!

Kráter zvaný Vredefort: Největší...

Náš nejbližší vesmírný souputník Měsíc má svou tvář...
Zázrak nad zázraky: Dva křesťanské kostely vyvázly ze smrtící vlny bez úhony!

Zázrak nad zázraky: Dva křesťanské...

Na indické pobřeží se žene ničivá tsunami. Vše, co...
Netradiční filmové hvězdy: Takhle vypadají královny vřískotu!

Netradiční filmové hvězdy: Takhle...

Vyděšená dívka klopýtavě couvá. Děsivý pronásledovatel se...
A tohle jste věděli? „A přece se točí!“ nikdy nezaznělo!

A tohle jste věděli? „A přece se...

Řadu staletí, kdy církev měla vždy pravdu, byl její...
Nespavost? Zkuste mléko s medem nebo čokoládu!

Nespavost? Zkuste mléko s medem...

Jsou dny, kdy vstupenku do říše snů nedostanete, ať...
Mocná šalvěj: Ochrání nás před zlými silami?

Mocná šalvěj: Ochrání nás před...

Bylinu, jejíž jméno je odvozeno od slova salvare...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.