Nový model: Jak vznikl genetický kód?

Otázka, jak vlastně vznikl genetický kód, patří k ústředním otázkám biologie. Složitost a komplexnost genetického kódování je tak nesmírná, že řada lidí (?) raději složí ruce do klína. Vědecky založení lidé (??) se však nevzdávají snadno, a proto postupně testují jeden model za druhým. O další krůček k řešení tohoto tajemství nás nedávno přiblížil tým fyziků z Rockefellerovy univerzity v New Yorku.Otázka, jak vlastně vznikl genetický kód, patří k ústředním otázkám biologie. Složitost a komplexnost genetického kódování je tak nesmírná, že řada lidí (?) raději složí ruce do klína. Vědecky založení lidé (??) se však nevzdávají snadno, a proto postupně testují jeden model za druhým. O další krůček k řešení tohoto tajemství nás nedávno přiblížil tým fyziků z Rockefellerovy univerzity v New Yorku.

Psal se rok 1952, když američtí biochemikové Stanley Miller a Harold Urey provedli slavný experiment, který jim navždy vysloužil místo v učebnicích biochemie. Jednu skleněnou láhev naplnili jednoduchými organickými sloučeninami, o nichž předpokládali, že se běžně vyskytovaly v dávné minulosti Země (např. H2O, CH3, NH3, N2). Tuto směs pak bombardovali elektrickými výboji, náhražkami dávných blesků. Překvapení na ně čekalo v druhé lahvi na konci pokusu.  Namísto původní jednoduché směsi se v ní totiž objevily i aminokyseliny, základní stavební kameny bílkovin (proteinů), bez kterých se žádný dnešní živý organismus neobejde. Pro další generace vědců však zůstala stále otevřená další, a popravdě mnohem složitější hádanka: Kde se vzala pravidla, která jednotlivým aminokyselinám předepisují, jak se v proteinové molekule řadit za sebe? Podaří se nám někdy úplně „nahlédnout Bohu do karet“?

Kde leží jádro pudla?

A v čem je vlastně ta největší potíž? Nejpalčivější problém spočívá v tom, jak mohlo něco tak složitého a účelně uspořádaného vůbec vzniknout v situaci, kdy neexistovaly žádné buněčné struktury, které se by se staraly o přísun živin, energie a stabilní prostředí. Hozenou rukavici se pokoušela zvednout řada vynikajících mozků současné vědy, cesta k definitivnímu výsledku je však klopotnější, než to na první pohled vypadá. Mezi protobiology, jak si vědci, kteří se výzkumem počátků života zabývají, říkají, je již dlouhou dobu populární představa takzvaného RNA světa, tedy světa ribonukleových kyselin. Tato představa se vyhýbá jednomu velkému problému, s nímž je třeba se vyrovnat – totiž metaforickému zapřahání vozu před koně. DNA, tedy deoxyribonukleová kyselina, se totiž sama postavit nedokáže. Potřebuje k tomu celou baterii enzymů, které zase nejsou kódovány nikde jinde než v ní samotné. V RNA světě však neexistuje jiná nukleová kyselina, než jen RNA. Na rozdíl od DNA mají však její molekuly i katalytické vlastnosti, a tak si mohly při své stavbě vzájemně pomáhat. Teprve v dalším běhu evoluce předala RNA pomyslný štafetový kolík kódování do rukou stabilnější DNA. Genetický kód, který umožňuje tvorbu všech proteinů, byl však v té době již dávno na světě.

Čas je klíčem ke všemu

Tým složený ze dvou Američanů a jednoho Švýcara se rozhodl vybudovat svůj model právě v takovém RNA světě. Jejich hlavní zájem se soustředil na problém, jak a za jakých podmínek si dokáže se svým úkolem poradit malá molekula tRNA, jejíž práce spočívá v nalezení a přinesení správné aminokyseliny do budoucího řetězce (viz rámeček). Podařilo se jim dokázat, že i v tak jednoduchých podmínkách, jaké poskytuje enzymů prostý svět RNA, mohou vznikat i řetězce, které nejsou nahodilé, ale přesně kódované. Nečekejme však, že se jim najednou podařilo rozlousknout proces kódování pro všechny druhy aminokyselin najednou. Pro zjednodušení vypracovali systém, který se skládal pouze ze dvou nejjednodušších z nich, dvou primitivních molekul tRNA a vzorových, kódujících molekul RNA (templáty). Vznik kódovaného řazení aminokyselin podle nich záleží na dvou procesech s jistým časovým rozpětím. Různé aminokyseliny totiž potřebují různě dlouhý čas na to, aby si vytvořily vazbu na „donašeče“ – molekulu tRNA. Jinak dlouhý čas potřebují zase k tomu, aby si mezi sebou v nově se tvořícím řetězci vytvořily vazbu. „Když je délka obou časů srovnatelná, nastává proces výběru. Některé aminokyseliny jsou totiž lépe připravené než jiné. Právě zde bychom mohli hledat počátek veškerého kódování,“ vysvětluje jeden ze spoluautorů studie, Američan Albert Libchaber.

Více se dozvíte v:

M. Barbieri: Organické kódy, Academia, Praha 2006

Jak se dělá protein?

 Na začátku cesty k proteinu je informace, uložená v molekule DNA. Ta je v ní zapsaná prostřednictvím čtyř bází, které označujeme písmenky A,G,T,C. Aby však mohlo dojít k dalšímu kroku, musí se dvoušroubovice nejprve rozdělit a přepsat na komplementární vlákno, jakýsi nosič. Tento nosič informace však v dnešních buňkách již není tvořen DNA, ale její jednovláknitou „sestřičkou“, (mediátorovou – m) RNA. Po tomto přepisu, neboli transkripci, se o zrod budoucího proteinu starají spolu s množstvím nejrůznějších enzymů už jen různé varianty RNA. V drobounkých ribozomech, které jsou z velké části také tvořeny zvláštní formou RNA (rRNA), se vlákno získané přepisem „přeloží“ do řeči aminokyselin a první podoba proteinové molekuly je na světě. Aby se však spolu DNA a RNA na přípravě budoucí molekuly vůbec „domluvily“, musí používat společný slovník, genetický kód. Pro každou dílčí cihličku proteinu (aminokyselinu, kterých živá těla používají 20) proto existuje jedno nebo i více „slov“, tvořených třemi písmenky kódu – triplet čili kodón (např. AUG, UGG atd.). Jak ale tento kód vznikl? Zatím přesně nevíme, jisté však je, že roli při tom hrály konkrétní vlastnosti jednotlivých zúčastněných molekul.

Rubriky:  Genetika
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Většinu případů rakoviny způsobí chyba v překladu DNA

Většinu případů rakoviny způsobí...

Nepředvídatelné chyby v kopírování DNA při dělení buněk jsou podle...
Umělý život klepe na dveře

Umělý život klepe na dveře

Uměle vytvořený člověk zatím bývá jen námětem sci-fi filmů a románů. A i když...
Proč se věk nobelistů neustále zvyšuje?

Proč se věk nobelistů neustále...

Co mají všichni nositelé Nobelovy ceny za rok 2016 společného? Jsou...
Motor, který nesplnil všechna očekávání

Motor, který nesplnil všechna...

Wankelův motor je typem spalovacího motoru s rotačním pístem. Využívá...
Vybroušená krása

Vybroušená krása

Diamant je nejtvrdší známý přírodní minerál. Jde o krystalickou formu uhlíku....
Jak se dělá umělá čočka?

Jak se dělá umělá čočka?

Brýlové čočky byly původně vyráběny pouze ze skla. S rozvojem techniky a objevem nových...
Největší vesmírná mystéria

Největší vesmírná mystéria

Jaká jsou největší vesmírná mystéria podle americké NASA? Co může...
Vědci objevili, proč muži plešatí

Vědci objevili, proč muži plešatí

Plešatost trápí mnoho mužů. Nová studie britských vědců identifikovala více než...
Jak člověk pokořil zvuk?

Jak člověk pokořil zvuk?

Zajímavé video ukazuje, co se děje s letadlem v okamžiku, kdy prolomí...
Co o sobě prozradí Antarktida?

Co o sobě prozradí Antarktida?

Geolog John Goodge z americké University of Minnesota pátrá po minulosti...

Nenechte si ujít další zajímavé články

V autobuse už nebude nuda! Postará se o to váš nový chytrý spolucestující

V autobuse už nebude nuda! Postará se...

Není to tak dávno, co světoznámá společnost IBM...
Nejslavnější účetní zloději

Nejslavnější účetní zloději

Účetní podvody a krádeže se dějí každý den na...
Budou nabíječky v každé toaletě?

Budou nabíječky v každé toaletě?

Všechny mobilní telefony potřebují svou šťávu....
Reportáž psaná na oprátce: Proč skončila v láhvi od kompotu?

Reportáž psaná na oprátce: Proč...

Pan Závodský lopatou vyrývá na dvorku svého stavení...
Fascinující fakta o dvojčatech: Mohou mít rozdílného otce?

Fascinující fakta o dvojčatech:...

Dvojčata nepřestávají udivovat lékaře, vědce, své...
VIDEO: Češka testovala bionickou ruku, díky lidem si může koupit dvě

VIDEO: Češka testovala bionickou...

Češi se zase jednou ukazují v lepším světle. Splnili...
Nepotopitelná Violet přežije tři lodní katastrofy, včetně Titaniku!

Nepotopitelná Violet přežije tři...

Život se s Violet Constance Jessopovou (1887–1971) nemazlí....
Jsou punčochy opravdu českým vynálezem?

Jsou punčochy opravdu českým...

Thomas Alva Edison. Profesor Bedřich Hrozný....
Jeden z divů České republiky: Elektrárnu ukrývá hora!

Jeden z divů České republiky:...

Jeseníky jsou jedním z nejkrásnějších koutů naší...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.