Vakuum vykazuje podivné kvantové vlastnosti

Týmu astronomů pracujícímu s dalekohledem ESO/VLT se ve světle vyzařovaném mimořádně hustou neutronovou hvězdou se silným magnetickým polem zřejmě podařilo zachytit první známky kvantového efektu, jehož předpověď pochází již z roku 1930. Stupeň polarizace pozorovaného světla naznačuje, že v jinak prázdném prostoru v okolí neutronové hvězdy by se mohl projevovat kvantový jev známý jako dvojlom vakua.

This artist’s view shows how the light coming from the surface of a strongly magnetic neutron star (left) becomes linearly polarised as it travels through the vacuum of space close to the star on its way to the observer on Earth (right). The polarisation of the observed light in the extremely strong magnetic field suggests that the empty space around the neutron star is subject to a quantum effect known as vacuum birefringence, a prediction of quantum electrodynamics (QED). This effect was predicted in the 1930s but has not been observed before. The magnetic and electric field directions of the light rays are shown by the red and blue lines. Model simulations by Roberto Taverna (University of Padua, Italy) and Denis Gonzalez Caniulef (UCL/MSSL, UK) show how these align along a preferred direction as the light passes through the region around the neutron star. As they become aligned the light becomes polarised, and this polarisation can be detected by sensitive instruments on Earth.

Roberto Mignani z italského Národního ústavu pro astrofyziku (INAF) a jeho tým využili dalekohled ESO/VLT (Very Large Telescope) pracující na observatoři Paranal v Chile ke zkoumání neutronové hvězdy RX J1856.5-3754, která leží asi 400 světelných let od Slunce.

Přestože se jedná o jednu z nejbližších známých neutronových hvězd, je tak mimořádně slabá, že její pozorování pomocí přístroje FORS2 a dalekohledu VLT bylo doslova na hranici technických možností současných astronomických zařízení.
Neutronové hvězdy jsou velmi hustými pozůstatky jader hvězd alespoň desetkrát hmotnějších než Slunce, které v závěrečné fázi svého vývoje explodovaly jako supernovy. Nesou mimořádně silné magnetické pole – miliardkrát silnější než například u Slunce, které proniká jejich povrchovými vrstvami do okolního prostoru.

Magnetická pole neutronových hvězd jsou tak silná, že mohou ovlivňovat dokonce vlastnosti prázdného prostoru v okolí. Vakuum většinou považujeme za naprosto prázdné a světlo jím může procházet bez jakékoliv změny. Z pohledu kvantové elektrodynamiky je však prázdný prostor naplněn neustále vznikajícími a zanikajícími virtuálními nabitými částicemi. Kvantová teorie popisuje rovněž interakce mezi těmito nabitými částicemi a fotony. Velmi silná magnetická pole mohou ovlivňovat vlastnosti prostoru takovým způsobem, že i ve vakuu může docházet ke změnám polarizace světla, které jím prochází.

2

Roberto Mignani vysvětluje: „Podle kvantové elektrodynamiky se vakuum v silném magnetickém poli při průchodu světla chová podobně jako hranol a dochází zde k jevu, který je známý jako dvojlom vakua.“

Dvojlom vakua je jedním z mnoha jevů předpovězených v rámci kvantové elektrodynamiky, ale jako jeden z mála dosud nebyl pozorován. Pokusy o jeho detekci v laboratorních podmínkách jsou neúspěšné již 80 let, od doby, kdy existenci jevu předpověděli Werner Heisenberg a Hans Heinrich Euler.
„Jev lze detekovat pouze za přítomnosti mimořádně silných magnetických polí, jaká se vyskytují například v okolí neutronových hvězd. To znovu ukazuje, že neutronové hvězdy představují pro vědce nenahraditelné přírodní laboratoře, ve kterých je možné testovat základní zákony přírody,“ říká Roberto Turolla z padovské univerzity.

Po pečlivé analýze dat se týmu podařilo odhalit známky lineární polarizace (na úrovni kolem 16%) – což by mohlo být důsledkem zesilujícího efektu vakuového dvojlomu, který nastává v prázdném prostoru obklopujícím neutronovou hvězdu RX J1856.5-3754.

3

Vincenzo Testa taktéž působící na INAF pozorování dále komentuje: „Jedná se o vůbec nejslabší astronomický objekt, u jakého kdy byla polarizace světla měřena. Stupeň lineární polarizace, který jsme naměřili, není možné jednoduše vysvětlit pomocí dostupných modelů, pokud nebereme v úvahu také vakuový dvojlom předpovězený kvantovou elektrodynamikou,“ říká dále Roberto Mignani.

Vědci s napětím očekávají další vylepšení možností výzkumu v této oblasti, které přinese příští generace přístrojů a větších dalekohledů. „Měření polarizace pomocí skutečně velkých dalekohledů, jakým bude například teleskop ESO/E-ELT (European Extremely Large Telescope), mohou hrát zásadní úlohu při testování předpovědí kvantové elektrodynamiky stran efektů způsobených dvojlomem vakua u mnohem většího počtu neutronových hvězd. Měření, která jsme provedli ve viditelném světle, rovněž připravují půdu pro obdobné experimenty na vlnových délkách rentgenového záření,“ dodává Kinwah Wu z londýnské univerzity.

Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Lidstvo zná Pluto již 87 let

Lidstvo zná Pluto již 87 let

18. únor je v astronomii spojen se zajímavým výročím. Právě...
Miniaturní zabijáci chrání organismus

Miniaturní zabijáci chrání...

Imunitní systém lidského těla obsahuje tzv. NK buňky (z anglického Natural Killer...
Nechte práci na větru

Nechte práci na větru

Nejobvyklejším využitím energie větru je v současné době větrná elektrárna. Síly větru se...
Galaktický obří supervulkán

Galaktický obří supervulkán

Messier 87, která bývá také nazývána jako NGC 4486, je +8,60 magnitudy...
Co to jsou hydrotermální průduchy?

Co to jsou hydrotermální průduchy?

První hydrotermální průduch byl objeven u Galapág 14. 12. 1979. Jeho okolí...
Dřevěná budova vydrží i zemětřesení

Dřevěná budova vydrží i zemětřesení

Japonští technici a konstruktéři před časem uskutečnil test, který měl...
Připravte si dalekohledy, blíží se kometa

Připravte si dalekohledy, blíží...

Populární kometa 45P Honda-Mrkos-Pajdušáková dnes na své cestě vstoupí...
Jak pracuje mozek?

Jak pracuje mozek?

Tím, jak se vědci snaží proniknout stále hlouběji do tajemných zákoutí mozku,...
Spěte v teple

Spěte v teple

Tělní pokryv ptáků – peří – zná každý člověk. Peří je pro ptáky naprosto nezbytné,...
Mimozemský život: realita nebo čekání na Godota?

Mimozemský život: realita nebo...

Byl by to největší objev v dějinách lidstva. Zatím k němu však nedošlo....

Nenechte si ujít další zajímavé články

VIDEO: Orli ve službách armády ničí špionážní drony!

VIDEO: Orli ve službách armády ničí...

Využívání zvířat pro armádní účely není ničím novým...
Neuvěřitelné: Našel se prsten Robina Hooda?

Neuvěřitelné: Našel se prsten...

Byla to jedna z nejúžasnějších chvil britského...
Černé dějiny USA: Lynč, na který by se nejraději zapomnělo

Černé dějiny USA: Lynč, na který...

Z mohutného kmene vyráží k nebi spleť větví. Na dvou...
Fotograf Gregory Crewdson: Nechá strhnout dům, když mu překáží v záběru!

Fotograf Gregory Crewdson: Nechá...

Technik vypíná stroj na mlhu. Maskérky provádí poslední...
VIDEO: Těhotenský test trochu jinak

VIDEO: Těhotenský test trochu jinak

Těhotenský test si dnes v lékárně za pár korun koupí...
Vladimir Komarov: První oběť vesmíru zahyne v ďábelském stroji!

Vladimir Komarov: První oběť...

V rakvi vyložené bílým atlasem leží zuhelnatělý kus...
3 x nejpodivnější vražedné zbraně: Elektrická kytara, bowlingová koule i lodičky

3 x nejpodivnější vražedné zbraně:...

Pistole, sekery, nože. Když přijde na to, jak...
Naštvaný Vilém Mrštík: Proč dal malířce Braunerové košem?

Naštvaný Vilém Mrštík: Proč dal...

Z velké lásky zbývá velké zklamání. „Kdyby se...
Pískový mužíček: Večerníček, kterého rozpůlila železná opona!

Pískový mužíček: Večerníček,...

V době studené války mezi sebou nesoupeří jen USA a...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.