Proč Slunce utichlo?

Astronomové, kteří každý den míří své dalekohledy směrem na nejbližší hvězdu, Slunce, se v poslední době malinko nudí. Během předcházejících dvou let Slunce jako by zlenivělo – žádné sluneční skvrny, žádné gigantické erupce. Z tohoto zvláštního klidu jsou však astronomové již pěkně neklidní. Co by mohlo podle nich za slunečním spánkem stát?

Astronomové, kteří každý den míří své dalekohledy směrem na nejbližší hvězdu, Slunce, se v poslední době malinko nudí. Během předcházejících dvou let Slunce jako by zlenivělo – žádné sluneční skvrny, žádné gigantické erupce. Z tohoto zvláštního klidu jsou však astronomové již pěkně neklidní. Co by mohlo podle nich za slunečním spánkem stát?

Když na sluneční kotouč pohlédneme prostým okem, nezdá se nám, že by byl nějak moc živý. Ale chyba lávky! Stejně jako v jakékoliv jiné hvězdě probíhá i ve Slunci nesmírná řada více či méně klidných fyzikálních procesů, díky nimž k nám od něj putuje životodárná energie. V posledních dvou letech se však zdá, jako by si řada těchto procesů vybrala dovolenou. Tento zvláštní a velmi komplexní jev se nedávno pokusili vysvětlit solární specialisté z několika pracovišť ve Spojených státech.

Každých 11 let…

 Takzvaná „sluneční aktivita“, tedy výkyvy v intenzitě „slunečního větru“ a nejrůznějších typů záření, které k nám z naší životadárné hvězdy přicházejí, dokáže na zemském povrchu ovlivnit nejen řadu přístrojů, ale i organismů a možná i celých ekosystémů. Od jejího průzkumu bychom proto mohli čekat odpověď na pestrou škálu otázek, které spadají do nejrůznějších oborů od biologie přes meteorologii a klimatologii až po např. geologii. Astronomové už dlouhou dobu vědí, že aktivita Slunce není stále stejná, ale mění se v průběhu času v cyklech, které jsou poměrně jasně vymezené jeho magnetickým přepólováním. Tento cyklus, který astronomové také nazývají podle jeho objevitele cyklus Schwabeův, bývá různě dlouhý. Většinou trvá okolo 11 let, známe však i cykly, které trvaly jen 9 či naopak až 14 let. Během jednoho cyklu se sluneční aktivita také výrazně proměňuje. Období intenzivní činnosti, tzv. solární maxima, střídají propady, kdy se vlastně nic moc neděje, tzv. solární minima. V obdobích maxima pozorují astronomové na slunečním povrchu nebývale vysoký počet oblastí s výrazně zvýšeným magnetismem a nižší teplotou, tzv. slunečních skvrn. V období minimální aktivity je povrch Slunce naopak prakticky bez poskvrnky.

Nejméně za celé století

 Pro astronoma, který se zabývá slunečními cykly, je rokem 1 rok 1775. Od té doby proběhlo již celých 23 cyklů, do svého 24. vstoupilo Slunce v lednu roku 2008. Od té doby se mu ale do práce moc nechce – je na nejnižším stupni své aktivity za posledních 100 let! Solární astronomové však nezahálejí a snaží se přijít s nějakou teorií, co za tímto slunečním „mlčením“ vlastně stojí. Rachel Hoveová a Frank Hill z Národní sluneční observatoře v arizonském Tusconu se snažili hledat vysvětlení prostřednictvím techniky, která se nazývá helioseizmologie. Tento postup umožňuje studovat vnitřek Slunce na základě pozorování a analýzy oscilací na jeho povrchu. Konkrétní metoda, kterou užili, analyzovala data nashromážděná za 15 let pozorování tlakových vln, které se z vnitřních proudů derou vzhůru. Tímto způsobem se jim podařilo odhalit proud žhavé plazmy, ukrytý na sluneční poměry nepříliš hluboko – asi 7000 km pod povrchem. Tento proud se z našeho pohledu skutečně šnečím tempem „plazí“ od pólů směrem k rovníku, dokud nedotáhne magické hranice 220 severní šířky. Zanedlouho poté započne další série vznikání slunečních skvrn. „Odhalení tohoto proudu ukazuje, že sluneční magnetické dynamo není mrtvé, jak se někteří domnívali. Pouze si tentokrát dalo na čas,“ vysvětluje důvody pro vznik solárního minima Frank Hill.

Cesta do vnitřku solární skvrny

Jednou z oblastí, kde se uplatňují supervýkonné počítače, je i modelování procesů uvnitř Slunce. Takové procesy mají sice souvislost s tím, co mohu vědci pozorovat na povrchu, pouhým pozorováním ovšem zjistitelné nejsou. S neuvěřitelně detailní počítačovou simulací slunečních skvrn přišel v nedávné době německý astronom Matthias Rempel, který v současnosti působí v Národním centru pro výzkum atmosféry v americkém Boulderu. Model hlubinných proudů, který společně se svými kolegy vypracoval, odhalil dynamiku vznikání dvou hlavních oblastí skvrn – stínů (umbry) a polostínů (penumbry) – a jejich souvislosti s proměnami magnetického pole. „Tento model by nevznikl bez superpočítače, který je schopný provést 76 trilionů operací za jedinou vteřinu,“ pochvaluje si výdobytky moderní techniky Remper. Jeho model by v budoucnu mohl vést k lepším předpovědím ohledně vzniku slunečních skvrn.

Rubriky:  Astronomie
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Nalezeno dalších deset planet podobných Zemi

Nalezeno dalších deset planet...

Profesionálním a amatérským astronomům se díky datům z mise K2 podařilo objevit...
Nejstarší planeta sluneční soustavy? Pravděpodobně Jupiter.

Nejstarší planeta sluneční...

Planetární rodina obíhající kolem Slunce čítá osm členů. A jak to...
Čína pomocí rentgenového teleskopu prozkoumá černé díry

Čína pomocí rentgenového teleskopu...

Čína vypustila do vesmíru svůj první rentgenový teleskop. Cílem je pozorovat...
Život na subhvězdných objektech? Astronomové tvrdí, že nic není nemožné!

Život na subhvězdných objektech?...

Hnědý trpaslík je zvláštní objekt. Není už planetou, nicméně není ani...
Evropští vědci objevili ingredienci života v okolí mladé hvězdy podobné Slunci

Evropští vědci objevili ingredienci...

Astronomové využili radioteleskop ALMA k pozorování hvězd podobných Slunci...
Mohou se meteoroidy srazit se Zemí? Jak vysoké je to riziko?

Mohou se meteoroidy srazit se...

Po dvouleté analýze se podařilo českým astronomům objevit...
NASA vyšle ke Slunci sondu

NASA vyšle ke Slunci sondu

V létě příštího roku vyšle Americký Národní úřad pro letectví a...
Toseda svými nanotechnologiemi dobývá vesmír

Toseda svými nanotechnologiemi...

  Úspěch pardubické společnosti Toseda s.r.o. je především  osobním příběhem dvou...
Sekundární zrcadlo pro dalekohled ELT úspěšně odlito

Sekundární zrcadlo pro dalekohled...

Německá společnost SCHOTT dokončila odlévání kotouče pro...
Může existovat život na subhvězdných objektech?

Může existovat život na...

Hnědý trpaslík je zvláštní objekt. Není už planetou, nicméně není ani...

Nenechte si ujít další zajímavé články

Britští vědci: Poznáme, kdo bude jednou vraždit!

Britští vědci: Poznáme, kdo bude...

Představte si, že víte, kdo bude jednou...
Nejdražší zvířata světa: A jakou cenu má váš pes? 

Nejdražší zvířata světa: A jakou...

Zvířata, ať už domácí nebo divoká, se čím dál tím více...
Babylónské zmatení jazyků: Skutečná událost?

Babylónské zmatení jazyků:...

Zpupní Babylóňané se rozhodli, že postaví...
Rychlejší než blesk: Co jde možná nevěděli o oku

Rychlejší než blesk: Co jde možná...

Má pouhé 2 cm v průměru, váhu pár desítek gramů....
Tajemství Olméků: Co nám prozradí jejich obří sochy?

Tajemství Olméků: Co nám prozradí...

V Mexiku se tyčí gigantické kamenné hlavy. Jejich...
Jaké záhady kolem Ježíšovy poslední večeře ještě neznáte?

Jaké záhady kolem Ježíšovy poslední...

Onen moment zná každý, i ten, kdo Bibli viděl jen z...
Chcete být dlouhodobě šťastní? Kupujte zážitky, nikoli věci!

Chcete být dlouhodobě šťastní?...

Výzkumy ukazují, že důležitější než si koupit štěstí...
Měl císař Napoleon I. Bonaparte na povel i svoji kuchyni?

Měl císař Napoleon I. Bonaparte...

Po císařské korunovaci roku 1804 přesidluje...
Proč mají muži bradavky?

Proč mají muži bradavky?

Odpověď má co do činění s tím, jak se lidé...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.