Střelba do komety!

V katastrofických filmech se až dosud komety a asteroidy trefovaly do naší Země. Nyní se situace obrátila a střílet budeme my.V katastrofických filmech se až dosud komety a asteroidy trefovaly do naší Země. Nyní se situace obrátila a střílet budeme my.

Ke kometě Tempel se vydala americká sonda Deep Impact (“Drtivý dopad”), aby v její blízkosti uvolnila měděný projektil, který do jádra komety vyhloubí kráter. Vědci tak budou moci nahlédnout do nitra komety a zároveň do hluboké historie naší Sluneční soustavy.

Co prozradí komety?

O kometách se obecně předpokládá, že jsou to jakési časové kapsle, které nesou cenné informace o vzniku a vývoji sluneční soustavy.  Jsou tvořeny ledem a prachem, primitivním materiálem z nejranějších stádií našeho planetárního systému. Ze stejného materiálu se vytvořilo i Slunce a planety. Komety zkondenzovaly ve vzdálenostech odpovídajících oběžným drahám planet Uran a Neptun. Část z nich v těchto částech Sluneční soustavy zůstala, jiné byly gravitačně vymrštěny do Oortova oblaku. Každopádně se tak nacházely v dostatečné vzdálenosti od Slunce, aby je jeho záření nepozměnilo. Studium komet může tedy astronomům hodně napovědět o historii nejen naší Země. O kometách se také spekuluje v souvislosti se vznikem života na Zemi, protože na naši planetu mohly dopravit vodu a základní organické sloučeniny. V období “Velkého bombardování” v době před 4,5 až 3,9 miliardami let byly srážky naší planety s kometami a asteroidy velmi časté. Dnes by taková kolize s kometou mohla naopak životu na Zemi učinit ráznou přítrž.
V minulých letech se už několik kosmických sond přiblížilo ke kometám, aby je mohly zkoumat z bezprostřední blízkosti. Například sovětské sondy Vega 1 a 2 a evropská Giotto navštívily kometu Halleyovu, americká Deep Space 1 kometu Borrelly a naposledy opět americká Stardust kometu Wild 2. Tato sonda dokonce zachytila prachové částice z komety odvržené a nyní se s těmito vzorky vrací zpět na Zemi. Všechny dosavadní výpravy zkoumaly materiál pocházející především z povrchových vrstev kometárních jader. Ten ale může být vlivem řady procesů pozměněn. Vědce však zajímá i to, jak komety vypadají uvnitř, protože právě tam by se měl nacházet materiál původní, nedotčený miliardami let působení kosmických vlivů. Naplánovali proto výpravu Deep Impact, která by měla odhalit, co se pod povrchem komety nachází.

Ke kometě letí obrovský projektil

Sonda Deep Impact se na půlroční putování ke kometě Tempel 1 vydala 12. ledna letošního roku z mysu Canaveral (Florida). Na oběžnou dráhu kolem Země ji vynesla a následně na meziplanetární dráhu vypustila spolehlivá raketa Delta 2. Z jedné tuny startovací hmotnosti sondy tvoří 372 kg měděný projektil, určený pro zasažení kometárního jádra. Krátce po startu se sonda automaticky přepnula do bezpečného režimu, protože její systémy hlásily nějaký problém. Vše ale bylo rychle vyřešeno a sonda v pořádku letí vstříc setkání s kometou. První týdny po startu byly věnovány testování palubních systémů a přístrojů sondy. Jako kalibrační objekt sloužil především Měsíc. Autonomní navigační systém je testován s využitím Měsíce a Jupitera jako zkušebních cílů.

Proč právě tahle kometa?

Kometu 9P/Tempel 1 objevil 3. dubna 1867 astronom Ernst Wilhelm Leberecht Tempel. Kolem Slunce obíhá na dráze ležící mezi drahami Marsu a Jupitera a jeden oběh jí trvá 5,5 roku. Řadí se tak mezi tzv. krátkoperiodické komety (oběh kolem slunce kratší než 200 let). Pro meziplanetární výpravu tohoto druhu je vhodným cílem, protože už středně silná raketa je schopná kosmickou sondu vyslat s vhodnou rychlostí na kolizní dráhu s kometou. Ke kontaktu dojde v době, kdy se bude kometa nacházet v perihelu (nejblíže slunci) své dráhy a bude pozorovatelná ze Země, vzdálené 130 miliónů kilometrů (vzdálenost Země od Slunce je přibližně 149 500 000 km). Dosud není známo příliš mnoho podrobností o  kometárním jádru Tempel 1, předpokládá se ale, že je protáhlé s maximálním průměrem 6 kilometrů. Není rovněž zcela jasné jak bude reagovat na srážku s projektilem. O křehkosti či pevnosti kometárních jader toho sice obecně víme velmi málo, ale vědci se domnívají, že se kometa po zásahu nerozpadne a vliv na její dráhu by měl být zanedbatelný. Odhaduje se, že její rychlost se změní o pouhé 0,4 mm/hod., vzdálenost perihelu se sníží o 10 metrů a oběžná doba se zkrátí o méně než jednu sekundu. Srážku je možno obrazně přirovnat ke “kolizi” velkého dopravního letounu s komárem. Zanedbatelný efekt srážky na dráhu komety ve srovnání s jinými událostmi v jejím životě dokumentuje i fakt, že během přiblížení komety k Jupiteru, ke kterému dojde v roce 2024, se perihelová vzdálenost změní o celých 34 miliónů kilometrů.

Cíl se musí pozorovat!

Předpokládá se, že kamera s vysokým rozlišením bude schopna kometu „oslovit“ poprvé asi 60 dnů před srážkou. Tento okamžik bude znamenat počátek intenzivního pozorování komety. Získaná data umožní vědcům dozvědět se více informací o dráze komety a případně upravit přibližovací strategii. Důležité bude rovněž zjistit detaily o rotaci kometárního jádra a prozkoumat výtrysky prachu a plynu.

Poslední hodiny před výstřelem

Pouhý den před srážkou se z mateřské sondy, vzdálené od jádra stále ještě 864 000 kilometrů, uvolní projektil. Krátce poté provede mateřská sonda úhybný manévr, aby se sama srážce s kometou vyhnula.
Válcový projektil o průměru 1 metru je vybaven řídícím počítačem, navigační kamerou a pohonným systémem umožňujícím manévrování. Inteligentní navigační systém – původně vyvinutý pro výpravu Deep Space 1 – vyhledá na základě snímků vhodné místo pro dopad. Za pomoci raketových motorků bude projektil schopen upravit svou dráhu tak, aby zasáhl vytipovanou oblast. Je žádoucí zasáhnout tu část kometárního jádra, které bude v danou dobu osvětlena sluncem. Vzhledem ke vzdálenosti, ve které bude projektil sondou uvolněn, a malým rozměrům kometárního jádra je zasažení požadované oblasti velmi náročným úkolem. Ve skutečnosti srážka proběhne tak, že projektil se přesune do dráhy komety, která jej dožene. Zpočátku budou tedy snímky pořízené kamerou určeny hlavně pro navigační účely, ale s postupným přibližováním poroste rovněž jejich vědecká hodnota. Se zmenšující se vzdáleností se bude zvyšovat prostorové rozlišení detailů na povrchu. Pokud kamera přežije až do okamžiků těsně před impaktem, očekávají vědci snímky s dosud nejlepším rozlišením jakého bylo kdy u komet dosaženo.

Palte!!!

Relativní rychlost projektilu vzhledem ke kometě bude v okamžiku srážky 10,2 km/s. Energie uvolněná při srážce tak bude odpovídat 4,5 tunám klasické trhaviny TNT (trinitrotoluen). Projektil se vypaří a na povrchu kometárního jádra se rychle vytvoří kráter. Jak velký bude, to závisí na pevnosti a struktuře materiálu jádra. Průměr kráteru může dosáhnout až 100 metrů, jeho hloubka až 30 metrů. Zjasnění při nárazu bude pozorovatelné i pozemskými dalekohledy. Materiál komety bude odvržen do okolního prostoru, část se stane součástí její komy (plynný obalu), zbytek dopadne zpět na povrch. Otázkou je, za jakou dobu se okolí místa dopadu “vyčistí”, aby mohla přelétávající mateřská sonda nahlédnout do nitra vzniklého kráteru.

Přílet mateřské sondy

Sonda se bude v okamžiku srážky nacházet ve vzdálenosti 8 600 kilometrů a rychle se bude přibližovat. O 14 minut později už bude přelétat ve výšce 500 km nad jádrem. Nejoptimistější varianta počítá, že se kráter vytvoří během 200 sekund, podle pesimistické to bude trvat až 600 sekund. Každopádně 800 sekund po zásahu přejde sonda do stíněného režimu, aby nebyla poškozena při průletu nejhustší částí komy. Je tu tedy 200 sekundová rezerva pro vědecká pozorování i v případě pomalé tvorby kráteru. Po celou dobu přibližování budou na kometu a místo dopadu zaměřeny kamery a spektrografy na palubě sondy. Ačkoliv je sonda chráněna proti srážkám s částicemi, bude veškerá data zároveň vysílat v přímém přenosu zpět na Zemi. V případě zničení sondy tak budou cenná data zachráněna. Po průletu nejhustší oblastí komy se opět přístroje na palubě zaměří na kometu, tentokrát na její druhou, odvrácenou část. Kráter bude v tu dobu schovaný ve stínu, ale přístroje budou schopny detekovat případné nové výtrysky z jádra právě v těchto místech.
Kometa Tempel 1 bude v té době i pod dohledem řady pozemských dalekohledů. Čas srážky favorizuje oblast Tichého oceánu, takže kometu budou studovat zejména dalekohledy na Havajských ostrovech. Zaměří se na ní rovněž dalekohledy Hubble, Spitzer a Chandra z oběžné dráhy Země. Jasnost komety bude v době kolize asi 9,5 magnitudy, tedy přibližně 25krát slabší než nejméně jasné objekty pozorovatelné pouhým okem. Odhaduje se, že vlivem kolize by se její jasnost mohla zvýšit 15 až 40krát, mohla by tedy hranici viditelnosti okem překročit.

 
Konec výpravy?

Konec výpravy je momentálně plánován na 3. srpna po odvysílání všech dat, která byla během výpravy shromážděna. Kometa Tempel 1 ale nemusí být nutně posledním cílem této sondy. Pokud ta přežije setkání s kometou v pořádku, může být v budoucnosti využita pro blízké průlety kolem dalších komet. Tentokrát už samozřejmě bez vystřelování projektilů.

DEEP IMPACT

Trajektorie sondy 431 miliónů kilometrů
Vzdálenost Země – kometa:

v okamžiku startu – 267 miliónů kilometrů
v okamžiku srážky – 133,6 miliónů kilometrů

Sonda:

rozměry:
délka 3,3 m, šířka 1,7 m, výška 2,3 m

hmotnost na startu 601 kg, z toho 86 kg palivo
energie – 2,8 x 2,8 m solární panely, až 92 W podle vzdálenosti od Slunce

skladování energie – 16 Ah dobíjecí NiH baterie

Projektil:

délka 1 m, průměr 1 m
hmotnost 372 kg na startu, z toho 8 kg paliva

energie – jednorázová baterie s kapacitou 250 Ah

Cena:

267 miliónů dolarů (cca 7 miliard Kč) = 252 miliónů vývoj sondy, 15 miliónů její provoz

Přístroje na palubě:

1) Kamera s vysokým rozlišením

dalekohled o průměru 30 cm
infračervený spektrometr

multispektrální CCD kamera
nejlepší rozlišení 2 m/pixel

určená pro detailní pohledy na kometární jádro

2) kamera se středním rozlišením

dalekohled o průměru 12 cm
CCD kamera s rozlišením 7 m/pixel

pro komplexní pohledy na jádro komety
a jako záloha hlavní kamery

3) kamera na projektilu

srovnatelná s (1) ale bez filtrů
nejlepší rozlišení 0,5 m/pixel

Slovníček pojmů:

kometární jádro – relativně pevná část komety, převážně směs ledu, plynu a prachu, obvykle s průměrem 1 – 10 km
koma – hustý oblak prachu a plynu uvolněného z jádra, obvykle do 100 000 km

komety krátkoperiodické – oběžné doby kolem Slunce do 200 let
komety dlouhoperiodické – nad 200 let

astronomická jednotka [AU] – střední vzdálenost Země-Slunce (149,6 miliónů kilometrů)
Oortův oblak – zásobárna dlouhoperiodických komet ležící ve vzdálenosti desítek tisíc astronomických jednotek [AU] od Slunce

Edgeworthův-Kuiperův oblak – zásobárna krátkoperiodických komet, vzdálenost 30 – 50 AU od Slunce
perihel – bod na dráze komety (či jiného tělesa), který je nebližší Slunci

Rubriky:  Vesmír
Publikováno:
Další články autora
Právě v prodeji
Tip redakce

Související články

Čínská stanice se blíží k Zemi. Kam dopadnou její zbytky?

Čínská stanice se blíží k Zemi....

Experimentální vesmírná laboratoř Tchien-kung 1, která je zároveň vůbec...
Kdo má židli, ten bydlí… na Marsu.

Kdo má židli, ten bydlí… na Marsu.

Plány na osídlení Marsu se z románových a teoretických rovin začínají...
Kolem Země proletěl asteroid

Kolem Země proletěl asteroid

Včera proletěl ve vzdálenosti 44 000 kilometrů kolem Země asteroid pod...
Další družice Galileo se chystají na start

Další družice Galileo se...

Další dvě nové družice evropského navigačního systému Galileo...
Evropská cesta do vesmíru

Evropská cesta do vesmíru

Výsledky druhé světové války vykreslily na mapu světa dvě supervelmoci:...
Chlormetan? Ve vesmíru žádná velká vzácnost

Chlormetan? Ve vesmíru žádná...

Pozorování provedená pomocí radioteleskopu ALMA a kosmické sondy...
60 let od startu první družice

60 let od startu první družice

Východní blok jásal, západ překvapeně kulil oči. Ale lidstvo jako...
Záhada methanu na Marsu: důkaz života nebo jen chemie?

Záhada methanu na Marsu: důkaz...

Objev methanu v atmosféře Marsu vyvolal svého času diskuze o existenci...
Které hvězdy se blíží ke Slunci?

Které hvězdy se blíží ke Slunci?

Pohyb více než 300 tisíc hvězd pozorovaný observatoří ESA Gaia ukázal,...
8 největších výzev kosmického věku

8 největších výzev kosmického věku

Je to již více než 60 let, co lidstvo vstoupilo do kosmické éry. Z...

Nenechte si ujít další zajímavé články

První moderní genocida: Víte, kdy k ní došlo?

První moderní genocida: Víte, kdy...

Osmanská říše bývala silným hráčem na evropském poli. V druhé polovině 19....
Johann Gregor Mendel: Málem zapomenutý génius!

Johann Gregor Mendel: Málem...

Genetika je v současnosti uznávanou vědou, bez které se biologové či lékaři...
Blíží se den, kdy dojde… ROPA?

Blíží se den, kdy dojde… ROPA?

Říká se jí výměšek ďáblův – el excremento del diablo. Taky se jí...
Konspirace: Potopil se Titanic kvůli pojistnému podvodu?

Konspirace: Potopil se Titanic...

Tragédie Titaniku je jedna z nejznámějších lodních katastrof. Dodnes je...
Beethovenova Eliška: Je slavné dílo plodem zakázané lásky?

Beethovenova Eliška: Je slavné dílo...

Německý hudební génius Ludwig van Beethoven sedí u klavíru. Opakovaně do jeho kláves...
Šílená výzva na Facebooku: 1000 lajků, nebo pustím dítě z okna!

Šílená výzva na Facebooku: 1000...

Drží rok a půl staré dítě v okně bytu v 15. patře věžáku. Pod ním se...
Co jste určitě nevěděli: Největší tajemství Karlštejna!

Co jste určitě nevěděli: Největší...

Karlštejn. Český skvost tyčící se nad Berounkou. Hrad, který byl pokladnicí...
Sodíkové baterie: Budoucnost energie?

Sodíkové baterie: Budoucnost...

Shromažďování energie je v současnosti jedno z největších vědeckých témat. Klíčové...
Proč Stalina pohřbili tajně u zdi? Odpověď vás překvapí!

Proč Stalina pohřbili tajně u zdi?...

I dnes se najde v Rusku spousta lidí, kteří vám budou tvrdit, že Stalin...
Poznejte své IQ

Poznejte své IQ

V našem profesionálně sestaveném testu ihned zjistíte přesné výsledky a obdržíte certifikát.